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Abstract:  Excited states of the cores of spherically symmetric vacuum formations are consid-

ered within the framework of the Algebra of Signatures (Appendix, [7-11] and [1, 2]). Metric-

statistical model representations of second and third generation «leptons» and «quarks» are proposed. 

Principles of building statistical (quantum) geometrophysics as part of the program of a full geometri-

zation of the Clifford-Einstein-Wheeler physics paradigm are considered. 

Key words: vacuum, vacuum formation, muon, tau-lepton, quarks, second and third generation 

leptons, geometrophysics, quantum mechanics. 

 

1. Introduction 

This study is a continuation of the author's earlier works [1] and [2] containing a derivation of 

the Schrödinger equation and proposition of metric-dynamic models of first generation «quarks» and 

almost all «fermions» and «bosons» involved in the Standard Model. This work lays the foundation of 

statistical (quantum) geometrophysics and considers metric-dynamic concepts of average characteris-

tics of second and third generation «leptons» («muons», tau-«leptons») and c, s, t and b-«quarks». 

In the Algebra of signatures (Alsigna), particle names are given in quotation marks, for exam-

ple, «electron», «muon», etc. because metric-dynamic models of these localized vacuum formations in 

Alsigna are considerably different from those of the Standard Model or String Theory. Further expla-

nation is given in the Appendix, which contains explanations of other special terms and notation used 

in this paper. 

 

 
                                                 

1  alsignat@yandex.ru 



 2

2. States of internal “particelle” inside the core of a vacuum formation 

Let's first consider the behavior of an internal “particelle” inside the core of a spherical vacuum 

formation, for example, an «electron» (Figure 2.1). 

Note that in the Algebra of signatures metric-dynamic model of a free «electron» (or e--«quark») 

is defined by a set of metrics (2.1) {see (6.22) in [2]}, which are solutions of one of Einstein’s field  

equations [2]. (See Appendix for notation). 

 

                                                 «ELECTRON»                                            (2.1)    
“Convex” multilayer vacuum formation with signature 

(+ – – –) 
consisting of: 

 
The outer shell of the “electron” 

(in the interval [r1 , r6], Fig. 2.1), 
defined by a set of four metrics 
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The core of the «electron» 
(in the interval [r6 , r7], Fig. 2.1), 
defined by a set of four metrics 
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The scope of the «electron»  

in the interval [0 , ∞](Fig. 2.1) 
 

                                               ( )22222222)(
5 sin ϕθθ ddrdrdtcds +−−=−−−+ .                                           

 

Figure 2.1 presents a 3D metric-dynamic image of the core of the «electron» (i.e. a closed 

spherical vacuum formation) and its surroundings (outer vacuum shell), which was created [2, 8, 11] 

by analyzing a set of metrics (2.1). 

 

Let's assume that the internal “particelle” (the size of which can  be neglected here) is in a con-

tinuous chaotic motion around the center of the core of the «electron», which in our case coincides 

with the origin of the coordinate system XYZ (Figure 2.1). The probable cause of such chaotic motion 

of the internal “particelle” can be inherent vacuum perturbations, which permanently influence the jel-

lylike core of the «electron». 
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    Fig. 2.1. 3D-image of a free «electron», where, in line with the terms of the  hierarchy (6.20) of [2]: 

– The core of the «electron» is a closed spherical vacuum formation with radius r6 ~1.7·10–13 cm; 

– The outer shell of the «electron» is a radially deformed spherically symmetric vacuum formation, 

extending from the «electron's» core to the boundary of inner core of the Universe with radius  

   r1 ~ 3.4·1039 cm; 

– The internal particle is the core of a “protoquark” (a minuscule analogue of the «electron's» core) 

with radius r7 ~ 5.8·10–24 cm, which is located inside the core of the «electron»; 

– The abyss is a multilayer boundary between the outer shell and the core of the «electron»; 

– The scope is a kind of memory of the undeformed state of the vacuum area considered here. 
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Chaotic motion of the internal “particelle” is incessant since its total mechanical energy, Eр, 

remains, on the average, constant [1]: 

                                          <Ер > = <Tр (x,y,z,t)>  +  <Uр (x,y,z,t)> = const,                              (2.2)             

where                                                           

<Tр(x,y,z,t) >  – average kinetic energy of the internal “particelle” associated with its speed; 

<Uр(x,y,z,t) > – average potential energy of the internal “particelle” associated with the vacuum's elas-

tic properties; the zero potential is in the center of the «electron's» core. 

Analysis of the internal particelle's chaotic motion in [1] led to the derivation of the Schröding-

er equation 
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where ),,,(),( tzyxtr ψψ =  – a wave function, the squared modulus of which is a function of the proba-

bility density of the location of a wandering internal “particelle”; 
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<Uр(x,y,z,t)> – average potential energy of an internal “particelle”; 

            h = 1.055·10-34 J·s – Planck's constant; 

            mp  – mass of the internal particelle. 

Within the framework of fully geometrized physics it is not possible to introduce the notion of 

mass expressed in kilograms [7]. Therefore, the Algebra of Signatures tries to completely exclude this 

notion from geometrophysics. As was demonstrated in [1], the h/mp ratio can be replaced with a stable 

characteristic of a random process under consideration:  
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– inertia factor of internal particelle,                        (2.4) 

where                                            )(
3

1 2222
pzpypxpr σσσσ ++=                                                      (2.5) 

– squared root-mean-square deviation of a chaotically wandering internal “particelle” from the center 

of the core of the «electron» (Figures 2.1 and 2.2);  
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– averaged autocorrelation coefficient of the same random process. 

 

      

 

 

Fig. 2.2. Projections of a chaotically wandering internal “particelle” plotted on the Z axis against time t, 
where σpz, τpz are the root-mean-square deviation and autocorrelation radius, resp., of this random process 

 

Furthermore, Ер, Tр and Uр,, i.e. values expressed in terms of mass units, are replaced with the 

following massless values in the Algebra of signatures: 

           ε� =  
p

p

m

Е
 – total mechanical energium  of the internal particelle;           (2.6)                                  

�� =  
p

p

m

T
 – kinetic energium of the internal particelle;          (2.7)                                     

�� =  
p

p

m

U
– potential energium of the internal particelle.                     (2.8)                                 

In that case, equation (2.2) can be rewritten as follows: 

                                                                     <εр = <tр (x,y,z,t)>  +  <uр (x,y,z,t)> = const ,                              (2.9) 

and the Schrödinger equation (2.3), taking (2.4) into account, becomes massless 
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In line with the initial condition (2.9), we consider a stationary case where an internal “parti-

celle” is moving around the center of the core of the «electron» and where all average characteristics of 

this random process, including σp and τp, are time-independent. Therefore, the wave function of the in-

ternal “particelle” can be expressed as follows: 
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in this case, the massless Schrödinger equation (2.10) is simplified to 
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where  )( >< rup

r
is the average time independent potential energium of the internal “particelle”. 

Equations similar to (2.12) are well known in quantum mechanics. For convenience, we will 

present its solutions, referring to monographs [3, 13]. 

 

3. Internal “particelle” in a potential well 

Within the framework of the model considered here, an internal “particelle” with radius           

r7 ~ 5.8·10–24 cm is confined inside the core of the «electron» with radius r6 ~1.7·10-13 cm (Figure 2.1). 

Therefore, the average potential energium of the internal “particelle” can be expressed as a “potential 

well.” 

                                                    < �	 
�� >= � 0 ,   ��� 0 ≤ � ≤ 2��,
∞,   ��� � > 0 ��  � > 2�� .                                  (3.1)                    

Analyzing Equation (2.12) by taking (3.1) into account, we obtain the following discrete se-

quence of eigenvalues of total mechanical energium of the internal “particelle” [3] 
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where n = 1, 2, 3, ... is the principal quantum number. 

Eigenfunctions for the respective energium levels (3.2), i.e. solutions of equation (2.12) with 

average potential energium (3.1), will be the same as in [3] 

                                                            







=

66 2
sin

1
)(

r

rn

r
rn

πψ .                                            (3.3) 

Graphs of functions (3.3) and graphs of their squared moduli are given in Figure 3.1 (а,b) 
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Fig. 3.1. а) Wave functions for different excited states of the internal “particelle” in 

the core of the «electron», where l = 2r6; b) The squared modulus of the wave func-

tion, i.e. the probability density of the internal “particelle's” location inside the core 

of the «electron» for its different excited states; c) Levels of the internal “parti-

celle's” total mechanical energium in a potential well    

 

As follows from the functions illustrated in Figure 3.1 b, the center of the core of the «electron» 

is the most probable location of the internal “particelle” for n = 1. However, in an excited state (n = 2), 

the internal “particelle” is most likely located at an indefinite distance from the center of the «elec-

tron's» core.  

 

4. Internal particelle in elastically strained vacuum environment 

Now let's consider a case where elastic “tension” develops in the vacuum environment of an in-

ternal particelle as it moves away from the center of the “electron's” core (Figure 2.1) pulling the parti-

celle back to the center point.  

In the massless geometrophysics developed herein, the notion of “tension” of a vacuum area 

corresponds to the post-Newtonian notion of “strain” in a limited area of a continuous medium. It is 

important to note that the dimensionality of geometrized “tension” does not include a unit of mass 

(kilogram). Assume that the elastic vacuum tensions, �� , increase, on the average, proportionally to 

the “particelle's” distance from the center of the «electron's» core   

                                                        < �� 
�� >≈ ���,                                                   (4.1) 

c) 
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 where ku is a massless factor of the vacuum's elastic tension.  Then, the “particelle's” average potential 

energium can be approximated as                                    

                                                           < �	 
�� >≈ � �� ��� =  
! ���!.                                    (4.2)  

Substituting (4.2) into (2.12), we obtain the well-known “quantum harmonic oscillator” equation
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Study of that equation leads to the following 

discrete expansion of eigenvalues of the “particelle's” 

total mechanical energium [3, 13]:  
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ppn ηε ,  (Fig. 4.1)          (4.4) 

 where n = 1, 2, 3, ... is the principal quantum number. 

Corresponding to each discrete value of total mechani-

cal energium (4.4) is a specific eigenfunction [3, 13]:   
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is a nth degree Chebychev-Hermite polynomial, where λ0 is equal to                                                              

                                                          
u

p

k

η
λ =0 .                                                             (4.7)  

Now, let's define several eigenfunctions (4.5), describing various average behaviors of a ran-

domly wandering “particelle”, whose deviations from  the center of the «electron's» core (Figure 2.1) 

cause elastic tensions in the surrounding vacuum [3, 13] 

 

 
 

Fig. 4.1. Equidistant levels of the total mechanical 
energy of the εpn quantum harmonic oscillator 
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Function forms ψn  (4.9) – (4.10) and their squared moduli |ψn|
2  are shown on Figure 4.2. 

 

 

 

 

 

 

 

 

 

Fig. 4.2. a) wave functions for various average states of the “particelle's” wandering within an 
elastically-deformed vacuum; b) probability distribution densities of “particelle” locations in the 
vicinity of the «electron's» core center in the case considered here [3, 13]  

 

It follows from Equation (4.4), in this particular case, that even in a non-excited state (i.e. with          

n = 0), the “particelle's” total mechanical energium is not equal to zero: 
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the “particelle” will be permanently wandering around the «electron's» core center, and, therefore, the 

probability distribution density of  finding it in that area will be described by a Gaussian function  
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(Figure 14.3 b, upper plot).                       
 

Consequently, the root-mean-square deviation of a “particelle”, which wanders chaotically 

around the «electron's» core center, by taking (4.7) into account, is equal to:  

                                                                             .
22

1
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η
λσ ==                                                   (4.13) 

By comparing (4.13) with (2.4), we discover that the massless factor of vacuum elastic tension, 

kn, is inversely proportional to the average autocorrelation factor of the random process prτ examined 

here:
  

                                                           
pr

nk
τ
1= ,                                                            (4.14) 

which corresponds to the eigenfrequency of this “quantum harmonic oscillator” kn = f0 . 

 

5. Angular quantum characteristics of a wandering “particelle” 

While moving chaotically around the «electron's» core center, a “particelle” permanently 

changes the direction of its movement (Figures 2.1 and 2.2). Therefore, from the viewpoint of classical 

mechanics, such a “particelle” possesses a certain angular momentum 

                                                                "#� = �� × %�,                                                              (5.1)  

where r is the distance between the “particelle” and the «electron's» core center (the “particelle's” own 

radius is neglected here, and   %� = &	'�  is the “particelle's” immediate momentum value. Now let's 

present vector equation (5.1) in component form:                       

                                        .,, xyzzxyyzx ypxpLxpzpLzpypL −=−=−=                                (5.2)  

In   classical mechanics, the squared modulus of the “particelle's” momentum will be equal to                                                           

                                                              .2222
zyx LLLL ++=                                                           (5.3)  

Applying a well-known quantum mechanics procedure, let's re-write the operators of the “par-

ticelle's” momentum components (5.2) [13, 15]  
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Now, in order to obtain massless operators, let's divide both members of (5.4) by mp   
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As a result, by taking (2.4) into account, we obtain 
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where  zyx lll
∧∧∧

,,  are components of the “particelle's” specific relative angular momentum operator, 

since vr
m

L
l

p

×== .   

In the spherical system of coordinates, massless operators (5.6) are expressed as follows  
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The operator corresponding to the square of the modulus of the specific relative angular mo-

mentum, that is, corresponding to expression (5.3), is equal to   
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The generalized Schrödinger equation (2.12) can be presented in the following form [13, 15] 
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where the Laplace operator, ∇2, takes the following form in spherical coordinates  
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while the 2
,ϕθ∇  operator is defined by Equation (5.9).

  
  

Substituting (5.11) into the massless Schrödinger equation (5.10), and assuming   

                                                 ),()(),,( ϕθϕθψ YrRr = ,                                               (5.12)  

we obtain 
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Since the left and the right members (5.13) depend on different independent variables when   

considered separately, they should be equal to one and the same constant, λ.  

Therefore, we have two separate equations for the radial function R(r) and the spherical func-

tion Y(θ,ϕ), [13, 15] 
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The appearance of the radial function R(r) and the eigenvalues of the “particelle's” total me-

chanical energium, εpn, are determined by the specific kind of the average potential energium,

>< )(rup

r
. Shown here above, for instance, were radial functions (3.3) and (4.5), where >< )(rup

r
 is 

determined by (3.1) or (4.2), respectively. 

Solutions of equation (5.15) is well-known in quantum physics; they take on the following ap-

pearance: [13, 15]  
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+
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ξ
ξθ  are the associated Legendre functions, 

l  and  m are the orbital and magnetic quantum numbers respectively, and ξ = cosθ.   

Functions (5.16) are suitable for describing the average orbital component of the motion of a 

“particelle” that moves chaotically around the «electron's» core center, for any average potential ener-

gium >< )(rup

r
 distributed symmetrically around the center.   

Given in Table 5.1 are several functions Yl
m(θ,ϕ) from (5. 16) together with their corresponding 

probability densities of the angular distribution of a “particelle’s” location in the vicinity of  corre-

sponding “electron's” core center |Yl
m(θ,ϕ)|2 [13, 15]. 

                                                                                                                                          Table 5.1 

 

Types of angular distributions |Yl
m(θ,ϕ)|2 for different values of orbital l and magnetic m quan-

tum numbers are shown on Figure 5.1 

 

 

Quantum 
 numbers 

Yl
m(θ,ϕ) |Yl

m(θ,ϕ)|2 

l = 0, m = 0 Y0
0 = [1/(4π)]1/2 |Y0

0)|2 = 1/(4π) 

l = 1, m = 0 Y1
0 = [3/(4π)]1/2cos θ |Y1

0)|2 = [3/(4π)] cos2 θ 

l = 1, m = 1 Y1
1 = – [3/(8π)]1/2sin θ eiϕ |Y1

1)|2 = [3/(8π)]  sin2
θ  

l = 1, m = – 1 Y1
–1= [3/(8π)]1/2sin θ e– iϕ |Y1

–1)|2= [3/(8π)] sin2
θ 

l = 2, m = 0 Y2
0 = [5/(4π)]1/2 [(3/2) cos2θ – 1/2] |Y2

0)|2 = [5/(4π)][(3/2) cos2θ – 1/2]2 

l = 2, m = 1 Y2
1 = – [15/(8π)]1/2sin θ cos θ e iϕ |Y2

1)|2 = [15/(8π)] sin2
θ cos2θ 

l = 2, m = – 1 Y2
–1= [15/(8π)]1/2sin θ cos θ e– iϕ |Y2

–1)|2 = [15/(8π)] sin2
θ cos2θ 

l = 2, m = 2 Y2
2 = [15/(32π)]1/2sin2

θ e2iϕ |Y2
2)|2 = [15/(32π)] sin4

θ  

l = 2, m = – 2 Y2
–2 = [15/(32π)]1/2sin2

θ e–2iϕ |Y2
–2)|2 =[15/(32π)] sin4

θ 
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Fig. 5.1. Probability densities of angular distribution of “particelle’s” location in the vicinity of 
the «electron's» core center |Yl

m(θ,ϕ)|2 for different values of orbital, l, and magnetic, m, quan-
tum numbers 
 

In terms of the Algebra of Signatures, the average behavior of a chaotically wandering “parti-

celle” described by a probability distribution density 222 |),()(||),,(||),,(| ϕθϕθψψ m
l

n YrRrzyx ==
                  

leads to the curving of the vacuum area around such “particelle” with the formation of stable convex-

concave features inside the core of the “electron” (Figure 5.2).
 

 

Fig. 5.2. Examples of averaged convex-concave features of the vacuum area within the «elec-
tron's» core connected with various probability distribution densities of the “particelle” loca-

tion 22 |),()(||),,(| ϕθψ m
l

n YrRzyx =  associated with different values of the three quantum 

numbers n, m and l. 
 
 
 
 

 

Therefore, without going beyond classical logic, the geometric and quantum mechanics presen-

tations appear to be closely interrelated within a common statistical (quantum) geometrophysics.  

Such considerations of the averaged discrete (quantum) sets of metric-dynamic “particelle” 

states within the «electron's» core may carry over into considerations of other similar local vacuum 
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formations of various scales. Therefore, the logical and mathematical apparatus of statistical (quantum) 

geometrophysics proposed here can be applied to the study of the following phenomena, among oth-

ers:  the wobbling of a biological «cell’s» inner core, the oscillation of a «planet's» inner core, motions 

of an «embryo» in a womb, behavior of a fly in a jar or a tiger in a cell, a «galaxy» within a «metagal-

axy», etc.  

Let's select as example any set of two nested spherical vacuum formations from the hierarchy 

(6.20) in [2]: 

             core:  – a biological «cell’s» inner core with r5 ~ 4.9·10–3 
сm;  

            “particelle”:  – the core of an «electron» with r6 ~1.7·10–13
сm, 

                                                         or  

             core: – the core of a «galaxy» with r3 ~ 4·1018 
сm;  

             “particelle”: – the core of a «star» or a «planet» with r4 ~ 1.4·108 
сm, 

                                                         or  

               core: – a core of a «metagalaxy» with r2 ~ 1.2·1029 сm;  

               a “particelle”: – a core of a «galaxy» with r3 ~ 4·1018 сm.  

For each of these mutually mobile “core-particelle” combinations it is possible to derive dis-

crete (quantum) sets of averaged metric-dynamic states similar to the states of a “particelle” within the 

core of an «electron». The difference between them will lie basically in the value of the “particelle's” 

inertial factor, хη , (2.4), which depends on the scale of the phenomenon under consideration. 

As an example, let's evaluate the inertial factor of the core of the «electron» wandering chaoti-

cally around the core of a “hydrogen atom” (Figure 5.3, paragraph 11 in [2]). 

                                                             ,
2 2

еr

еr
е τ

ση =
                                                        

(5.32) 

where σer, τer are the root-mean-square deviation and autocorrelation radius, respectively, of a random 

process related to the chaotic wandering of the «electron's» core around the «atom's» core.  

The following equation is known in modern physics:  
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=

еm

h 1.055·10–34 Js / 9.1·10–31kg ≈ 10–4 m2/s,                             (5.33) 

where mе is the mass of an electron. According to (2.4), the 

“electron's” core inertial factor can be assigned the value  

                  
ееr

еr
е m

h==
τ
ση

22

 
≈  10–4 m2/s.             (5.34) 

Assuming that the root-mean-square deviation σer of 

the «electron's» core’s chaotic motion in the vicinity of the 

«hydrogen atom» center is roughly equal to σer ~10–10 m (Fig-

ure 5.3), it follows from equation (5.34) that 

      22 еrеr στ = /10–4 
≈ 2·10–20/10–4 = 2·10–16 s.     (5.35) 

Now it is possible to derive the average velocity of the «electron's» core motion in the case un-

der consideration: <ve> = σer /τer = 10–10/2·10–16 = 0.5·106 m/s.   

For comparison, let's evaluate the inertial factor of a fly, ηm, moving chaotically inside a 3-liter 

closed glass jar. In that case, the root-mean-square deviation of the fly from the jar's center, ηm, and the 

correlation factor of this random process, τmr, will be roughly equal to: σmr ~ 5 cm = 0.05 m, τmr ~ 1.3 s, 

respectively. Therefore  

                                          ,/s0038.0
3.1

005.02 2
2

m
mr

mr
m ===

τ
ση

                                  
(5.36)

 

while the average velocity of its chaotic motion <vm> ≈ σmr /τmr ≈ 0.05/1.3 ≈ 0.038 m/s.  

Eigenvalues of the total mechanical energium of a fly confined in a jar (potential well) can be 

defined by equation (3.2)  

 
                                                        

, 
8

  2
2

22

n
rb

m
mn

ηπ
ε =                                                       (5.37) 

where rb = 0.12 m is the jar's radius, while the eigenfunctions for the total energium levels (5.37) are 

expressed by (3.3) 

 
 
Fig. 5.3. Probability density distribution of 
the location of the «electron's» core center 
inside a hydrogen atom. The maximum of 
this distribution is known to correspond to 
r~0.5А=0.5·10 –10m 
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This conclusion is experimentally verifiable. If we film a fly in a jar and play the film back at a 

higher speed, we will be able to see the distribution of the  fly's average positions in the jar. Then  the 

experiment can be repeated with different input conditions, such as temperature or pressure. In that 

case, under the predictions of Alsigna, different average distributions of the fly's locations will be ob-

tained. Of course, such atrocious treatment of animals, even for research purposes, is not in line with 

the moral principles of the Algebra of Signatures [5]. 

In our third example, let's consider a biological “cell.” Chaotic movements of its “core” may 

have the following average characteristics: σhr ~ 3.5·10–5 m, τhr ~ 1.2·10–3 s, and, consequently,              

ηh ≈ 20.4·10–2 m2/s. In this example, however, the oscillating “core” is linked with the “cell's” cyto-

plasm. Therefore, the “core's” deviation from its initial position in the cytoplasm leads to the buildup 

of elastic tensions pulling it back. Therefore, the eigenvalues of 

such a biological “cell's” total mechanical energium can be ap-

proximately defined by expression (4.4)   

                          






 +=
2
11

n
kh

hhn ηε ,                (5.39) 

while the eigenfunctions for these energium levels are described 

by Expressions (4.5) 

                                          
)(

2
exp

1
)(

2

0

rH
r

r nn








−=
λ

ψ ,                                              (5.40)  

where 
h

h

k

ηλ =0 ,  where kh is the massless factor of elastic tension of a biological “cell's” cytoplasm. 

It is also known that tree boughs move according to the Lissajous curves under the influence of 

wind (Figure 5.4).  

 
 

   Fig. 5.4. Discrete set of 3D                  
    Lissajous curves 
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Therefore, the Algebra of Signatures argues that the average behavior of macro objects is basi-

cally similar to that of microworld objects provided that conditions are equal, which means that in cer-

tain cases the methods and mathematical tools of quantum physics can be applied for describing dis-

crete sequences of average states of macroscopic objects.   

There are five quantum numbers, f, n, l, m, s, in statistical (quantum) geometrophysics that 

largely determine the scale and discrete variants of average manifestations (configurations) of each 

stable spherical vacuum formation since all of them are in permanent chaotic motion (Figure 5.6). 

 

 

Fig. 5.6. Chaotically wandering “core” of a vacuum formation with 
a “particelle” chaotically wandering inside the core 

 

6. «Muons», τ -«leptons» and с, s, t, b-«quarks» 

It is part of modern physics that collisions of particles 

moving at high velocities result in the birth of new particle-

antiparticle pairs.  

For example, let's  consider the birth of a muon-antimuon 

pair (Figure 6.1) and a τ+-lepton-τ –-antilepton, which form upon 

the collision of an electron and a positron: 

                                            е+
е

– → µ+µ –,        е+
е – → τ +τ –.                                        (6.1) 

The muon and τ-lepton are different from electrons only in terms of mass: 

    
 
Fig. 6.1. Collision of accelerated electron 
and positron sometimes leads to the birth 
of muon-antimuon or τ+ - lepton – τ –-
antilepton pair 
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                           mе = 0.511 MeV,       mµ = 105.658 MeV,       mτ = 1.984 GeV,                  (6.2) 

while all their other characteristics (charge, spin, lepton number, etc.) remain the same. 

Many researchers considered muons and τ-leptons so “redundant” in the structure of material 

world that they could not help asking: “Why did  nature need those participles at all?” 

According to the Algebra of Signatures (Alsigna), «muons», τ+-«leptons», «antimuons» and         

τ –-«antileptons» are not at all new particles, but are the same very «electrons» and «positrons», but 

with their “cores” being in an excited state. In other words, in terms of Alsigna, the “muon” and           

τ+-“lepton” are, respectively, the first (n = 1) and the second (n = 2) excited states of a free «electron», 

while the «antimuon» and τ –-«antilepton» are, respectively, the first (n = 1) and the second (n = 2) ex-

cited states of a free «positron».  

The same refers to «quarks», introduced in [2] and (2.10) of [8]: in Alsigna, с- and t-«quarks» 

are the first and the second excited states of a u-«quark», while s- and b-«quarks» are the first and the 

second excited states of a d-«quark». 

In order to prove these hypotheses, Alsigna proposes the following experiment. If we keep a 

certain amount of electron plasma in a magnetic trap under hard radiation, then, in line with Alsigna, 

the congested «electron» cores may undergo transition into excited states. In the latter case, the whole 

volume of irradiated electron plasma may acquire different physical properties.  

Another confirmation for the basics of quantum geometrophysics proposed here could be the 

acquisition of «leptons» and «quarks» of the fourth, fifth and higher generations, since under (3.2) and 

(4.4) there are more than 3 levels of the «particelle's» energium levels, εpn. 

The reason for the higher “interance” [in massless quantum geometrophysics, the analogue of 

mass (6.2)] of «muons» and τ-«leptons» is likely to be related to the complication of the average met-

ric-dynamic configuration of the vacuum area both inside and outside of their excited cores. Metric-

dynamic aspects of inertance of elementary “particles” will be considered in the following article of   

the series “Alsigna”.   
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It is interesting to experimentally check whether the «muon» and «antimuon» created by the 

collision of an «electron» and a «positron» (Figure 6.1) remain in an “entangled” state. For this pur-

pose it will be necessary to find out if the «muon's» transition into «electron» automatically leads to 

the «antimuon's» transition into a “positron”, or whether nature allows asymmetry in the number of 

simultaneously existing «muons» and «antimuons». 

 

7. Conclusions 

Article [2] introduced (in terms of Alsigna) metric-dynamic models of 16 types of «quarks» (to 

be more precise, 8 «quarks» and 8 «antiquarks»), of which it turned out to be possible to “construct” 

all kinds of «leptons», «mesons» and «baryons» known in the Standard Model. This article takes into 

account the omnipresent vacuum fluctuations and attempts to study regularities in the chaotic behavior 

of the cores and “particelles” of the abovementioned local vacuum formations.  

Vacuum fluctuations are non-removable in principle. This means that the axiomatic probability 

of quantum physics is as primary as is the determinism of differential geometry, which derives from 

the presumption of continuity of the vacuum.  

The equal coexistence of probabilistic and deterministic principles is forcing Alsigna to devel-

op “statistical geometrophysics,” which leads to an average description of discrete (quantum) geomet-

ric structures. The reason is that discrete sets of average states of chaotically wandering “particelles” 

(Figure 2.1) are inevitably manifested in the average metric-dynamic (convex-concave) configurations 

of vacuum areas both inside and outside of the cores (Figures 5.2 and 5.6).   

Now let's outline the basic notions of the Alsigna's “statistical (quantum) geometrophysics,” 

which are presented in [1, 2, 5 – 11] as well as in this work: 
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1). The notion of mass with the dimensionality of 

“kilogram” cannot be introduced into the completely geome-

trized physics, in principle. Therefore, the notion of mass has 

to be excluded from all geometrophysical perceptions. In-

stead of point particles with mass, charge, spin, etc., the 

Alsigna's geometrophysics considers spherical cores of local 

vacuum formations (Figure 7.1). Introduced in a similar way 

are such geometrized notions [5–11, 2] as the core “in-

ertance” (analogue of a point particle's inert mass), “intensi-

ty of a source of radial vacuum flows” around the core (analogue of a point particle's charge), aver-

aged angular velocity of core motion (analogue of a point particle's spin), “displacement of vacuum 

layers” around the core (analogue of a point particle's gravitational mass), the core's “energium” (a 

massless analogue of a point particle's energy), “tension” of a vacuum continuum (a massless ana-

logue of elastic tensions in a solid medium), “effect” (a massless analogue of force), etc. 

Masslessness of the Alsigna's geometrophysics is arousing most vehement criticism from the 

school of post-Newtonian researchers. However, those who have already grown aware of the impossi-

bility to resolve the problem of geometrizing the notion of “mass” join the ranks of Alsigna supporters. 

2). The vacuum state is provisionally considered as a continuous elastic-plastic pseudo-space. 

No actual substantiality of this pseudo-space is in any way manifested (i.e. it is not observed in any 

experiments). At the same time, such consideration of the vacuum allows: first, to objectify this  sub-

ject  of research; and secondly, to apply the methods of differential geometry and continuum mechan-

ics to the vacuum state.                                                          

3). The vacuum state is not a single continuous pseudo-space, but a result of additive overlap-

ping of 16 continuous pseudo-spaces, i.e. 4D spaces with different signatures or topologies [7]. The 

overlapping (superposition) of the 4D information is such that on the average the values in the signa-

ture for the vacuum state are zero. In other words, during their additive superposition these 16 continu-

 
Fig. 7.1. The core of an Alsigna local 
vacuum formation is the analogue of a 
point material particle in the post-
Newtonian physics. 



 23

ous pseudo-spaces completely compensate each other's manifestations down to the full absence of 

characteristics. In the same manner, the fluctuations of the vacuum state are such that are, on the aver-

age, identical to their compete absence.  Each of these 16 continuous pseudo-spaces can be described 

as a superposition of another 7 sub-spaces with different signatures (topologies), and such identifica-

tion of sub-spaces can be indefinitely continued [7]. Therefore, the Alsigna's vacuum state is an infi-

nitely overlapping, continuous, all-fluctuating pseudo-space, which is, on the average, “nonexistent.” 

For that reason, the Alsigna's vacuum state is also called the “Void” [7, 11]. 

4). If anything appears out of the Void (i.e. the vacuum state) it should necessarily appear in 

two mutually opposite forms: “particle” (local convexity) – “antiparticle” (local concavity); wave – 

antiwave; motion – antimotion; deformation – antideformation; dimension – antidimension, etc. These 

pairs of “features” and “antifeatures” are absolutely symmetrical in relation to the Void, but they can 

be phase-twisted and/or rotated against one another at different angles. These rotations and phase-

shifts of vacuum features and antifeatures predetermine the existence of worlds and effects acting 

within them. The development of these worlds is a gradual process of increasingly sophisticated en-

tanglement of the features and antifeatures inhabiting them. But no matter how these worlds can be 

intermixed and interrelated, the global averaging of each one of them is identical to the original Void.    

5). If we view a vacuum state as an objective feature (a continuous pseudo-space)  that is locat-

ed outside of the observer, it turns out that the notion of “time” is not attributable to such a state (an 

attribute of the external reality). In that case, “time” is only an “arithmetization” of the feeling of dura-

tion, which is only an attribute of an external observer. In other words, there is no space and no time   

external to the observer’s reality (these are only mathematical abstractions generated by the observer's 

consciousness); only a continuous pseudo-space and its movements exist. Therefore, Alsigna had to 

change the approach to interpreting the components of the metric tensor. In this situation, nonzero 

components of metric tensor gαβ determine the curving of the 3D local area of vacuum state (or any of 

its 3D sub-spaces), while zero components of metric tensor g00, gα0,  g0β are related to the accelerated 

linear or rotational motions of the same curved local vacuum area. Therefore, in the Alsigna formal-
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ism, a vacuum state (as well as all its sub-spaces and sub-sub-spaces) is identified as a continuous 3D 

elastic-plastic pseudo-space, where any curving of its local area inevitably gives rises to accelerated 

linear (laminar) or rotational (turbulent) motion in the same area. Therefore, Alsigna “sees” that in-

travacuum (pseudo-substantial) flows, which are called “intravacuum currents” form in any curved ar-

ea of vacuum (or in any region of one of its sub-spaces). Any curvatures of any local area of a 3D vac-

uum state give rise to intravacuum currents, and, conversely, the formation of an intravacuum current 

inevitably leads to a local curving of the respective 3D sub-space of the vacuum state. Moreover, inter-

relations between the zero and nonzero components of metric tensor gij are determined by the Einstein 

field equations. The four-dimensionality of the Einstein mathematical apparatus (to be more precise, 

Riemannian differential geometry) is connected not with the curvature of  space-time (which, accord-

ing to Alsigna, does not exist in external reality as it is only an attribute of the observer's logical think-

ing), but with the simultaneous inclusion of the curvature of the local 3D area of pseudo-substantial 

space and its own velocity and acceleration. Let's also note that in Alsigna, intravacuum currents are 

described with the help of quaternions, and the currents (flows) of various intravacuum sub-spaces are 

added together by the rules of Clifford Algebra.    

6). The vacuum state is in the permanent process of extremely sophisticated and multifaceted 

fluctuations, which are present everywhere. These fluctuations are connected with enormously com-

plex overlappings inside vacuum spaces, sub-space and sub-sub spaces of various topologies as well as 

with chaotic vibrations of each of these spaces and sub-spaces. The multifaceted vacuum fluctuations 

may be caused by the Colossal Determined (or Predetermined) Processes related to the Global For-

mation of the Universe. However, these Processes are so ''entangled” on the local level of the vacuum 

state that Alsigna is forced to treat these processes as random ones and apply the methods of probabil-

ity theory and mathematical statistics to their study. The attitude toward the vacuum state as an ex-

tremely complicated fluctuating and overlapping continuous pseudo-space is forcing Alsigna into de-

veloping a statistical (quantum) geometrophysics. Stable features and antifeatures “woven” of that 
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multifaceted pseudo-space and their stable metric-dynamic configurations are identified through the 

extremality of its action and entropy.  

7). The condition for the existence of the average stable vacuum formations is determined by 

the “Action Extremum Principle”, which is closely related to the “Entropy Extremum Principle” the 

“Principle of the Conservation of the Integrals of the Averaged Motion of Local Vacuum State Re-

gions” and the “Principle of the General Invariance of the Statistical Geometrophysics in Respect to 

Random Transformations in Four Coordinates”. From the above principles it follows that the average  

(frozen) geometric “frame” of the stable local vacuum formations must satisfy the Einstein Field Equa-

tions (which are second order differential equations) [2], while the averaged behavior of the cores of 

these vacuum formations must satisfy the Dirac 

Relativistic Equation, which, in the condition of low 

(compared to the speed of light) velocities (i.e. wave 

propagation velocity through the vacuum state) sim-

plifies down to the Schrödinger equation [1]. Alto-

gether,  the deterministic Einstein vacuum equations 

and the probabilistic Dirac or Schrödinger equa-

tions, derived from the above common Action Ex-

tremum Principle, Entropy Extremum Principle, Principle of the Conservation of Integrals of the Av-

erage  Motion of the Vacuum State Local Areas and Principle of the General Invariance of   Statistical 

Geometrophysics in Respect to Random Transformations in Four Coordinates, form the basis of   

massless statistical (quantum) geometrophysics and thus ensure the completeness of the Alsigna's logi-

cal apparatus. 

The presumptions of the statistical (quantum) geometrophysics, Alsigna, as outlined above, call 

for a radical revision of the standard physics paradigm, which can be justifiable only in case of resolv-

ing certain problems of modern physics and predicting new effects. 

 
 

Fig. 7.2. Elements of the Standard Model 
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The solution of one such problem is proposed in this work. Within the framework of statistical 

(quantum) geometrophysics, Alsigna, «muons» and tau-«leptons» may be interpreted as the first and 

the second excited states of «electrons» and «positrons» respectively;  с- and t-«quarks» are, respec-

tively, the first and the second excited states of a u-«quark», while s- and b-«quarks» are the first and 

the second excited states of a d-«quark». 

Therefore, Alsigna is able to explain metric-dynamic models of all «quarks», «mesons», «bary-

ons» and «bosons», which are included into the Standard Model [2] (Figure 7.2), including the metric-

statistical models of «muons»,  tau-«leptons» as well as s, b, с, t -«quarks». 

Still remaining, but beyond the scope of this work, are all kinds of «neutrinos»: νe , ν) , ντ, the 

metric-dynamic models of which are planned to be considered in the following article in this series.   

The author would like to thank V.A. Lukyanov and S.V. Przhigodsky for reading the draft and 

making valuable remarks.   

The author would like to thank V.A. Lukyanov and S.V. Przhigodsky for reading the draft and 

making valuable remarks, and David Ried and Alexander Kondorsky for the highly professional and 

creative translation of the text into English. 

The Appendix (Glossary of special notation and terminology) was compiled by David Reid, 

who also collaborated in the introduction of several new terms. 

Appendix 

Glossary of special notation and terminology 

Algebra of Signatures , also “Alsigna”. The structure developed by the author to designate a 

space consisting of a variable metric or pseudometric.  

Signature: A class of metrics, designated by a 4-tuple (b0, b1, b2, b3), such that for 0 < i < 3,          

bi ∈{ −,  0, +}. This designates the metric or pseudometric induced by an equation of the form              

[ds] i
2= a0f1(s,p)dx0

2 + a1f2(s,p)dx1
2 + a2f3(s,p) dx2

2 + a3f3(s,p)dx3
2, where ai ∈{0,−1,1}, s∈S, p is a fixed 

parameter, fi(s,p) are positive definite functions defined on S×{ p},  and S, p, and xi are specified further 
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in the designated metric or pseudometric. Further details are elucidated in [2] and other papers of the 

Alsigna series.  

Use of quotation marks. Elsewhere in the Alsigna series, two types of quotation marks are used. 

Besides the usual “...”, guillemets « ... » are used for each of a class of particles which are defined as 

structures of the background vacuum. (See “vacuum formations”). In this work, both types of quota-

tion marks are represented by the usual ones, as no confusion is likely to ensue.    

Vacuum formations: also “spherically symmetric vacuum formations”, or “spherical vacuum 

formations”. Particles defined in terms of a class of metrics or pseudometrics on the structure of the 

vacuum. The primary aim of the Alsigna series is to elucidate the structure of these particles. The im-

age of a bubble serves as a rough intuitive picture.  

 Particelle: one of the substructures of the vacuum formations.    

«Electron», «muon», etc. Structures of the vacuum which form a basis for explanations of the particles 

of the Standard Model; the name chosen indicates the standard particle most directly connected to the 

structure.      

Inertance: one of several characteristics of the vacuum formations which are analogues of simi-

larly named characteristics of standard particles. E.g, “inertance” is meant to evoke “intertial mass”. 

Other quantities are named in the text.  

nth generation of particles: an extension of the classification of elementary particles used in the  

Standard Model.  

Vacuum state: not to be confused with the vacuum state as usually defined. Also termed 

“void”. Details are outlined in the text.       
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