Excited States of Spherical Vacuum Formation Cores
(Basics of quantum geometrophysics)

Mikhail Batanov, Ph.D., Associate Professor, Dept. 207,
Moscow Aviation Institute
Moscow, Russia

Abstract: Excited states of the cores of spherically symimetmcuum formations are consid-
ered within the framework of the Algebra of Sigmati (Appendix, [7-11] and [1, 2]). Metric-
statistical model representations of second amrrd tigneration «leptons» and «quarks» are proposed.
Principles of building statistical (quantum) georophysics as part of the program of a full geometri
zation of the Clifford-Einstein-Wheeler physics @digm are considered.
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1. Introduction

This study is a continuation of the author's easerks [1] and [2] containing a derivation of
the Schrddinger equation and proposition of metyicamic models of first generation «quarks» and
almost all «fermions» and «bosons» involved inSkendard Model. This work lays the foundation of
statistical (quantum) geometrophysics and consid@sic-dynamic concepts of average characteris-
tics of second and third generation «leptons» (4muptau-«leptons») amg s, tandb-«quarks».

In the Algebra of signatures (Alsigna), particlenmas are given in quotation marks, for exam-
ple, «electron», «muon», etc. because metric-dynamodels of these localized vacuum formations in
Alsigna are considerably different from those & 8tandard Model or String Theory. Further expla-
nation is given in the Appendix, which containsl@xgtions of other special terms and notation used

in this paper.
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2. States of internal “particelle” inside the coreof a vacuum formation
Let's first consider the behavior of an internartcelle” inside the core of a spherical vacuum
formation, for example, an «electron» (Figure 2.1).
Note that in the Algebra of signatures metric-dyitamodel of a free «electron» (orequark»)
is defined by a set of metrics (2.1) {see (6.22]2]h which are solutions of one of Einstein’slfle

equations [2]. (See Appendix for notation).

KEECTRON>» (2.1)

“Convex” multilayer vacuum formation with signature
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consisting of:

The outer shell of the “electron”
(in the interval [r , rg], Fig. 2.1),
defined by a set of four metrics
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The core of the «electron»
(in the interval [k, 1], Fig. 2.1),
defined by a set of four metrics
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The scope of the «electron»
in the interval [0 ,oq(Fig. 2.1)

dg™2 = dt? - dr? - r2(dé” +sir? 6dg?).

Figure 2.1 presents a 3D metric-dynamic image ef ¢bre of the «electron» (i.e. a closed
spherical vacuum formation) and its surroundingstéo vacuum shell), which was created [2, 8, 11]

by analyzing a set of metrics (2.1).

Let's assume that the internal “particelle” (theesbf which can be neglected here) is in a con-
tinuous chaotic motion around the center of thee aarthe «electron», which in our case coincides
with the origin of the coordinate systekYZ(Figure 2.1). The probable cause of such chaotittamo
of the internal “particelle” can be inherent vacuperturbations, which permanently influence the jel

lylike core of the «electron».
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Fig. 2.1.3D-image of a free «electron», where, in line with terms of the hierarchy (6.20) of [2]:
— The core of the «electron» is a closed sphevalium formation with radiug ~1.7-1073 cm;
— The outer shell of the «electron» is a radiayodmed spherically symmetric vacuum formation,
extending from the «electron's» core to the boundamner core of the Universe with radius
r ~ 3.410°° cm;
— The internal particle is the core of a “protoddigla minuscule analogue of the «electron's» core)
with radiusr;~ 5.81072* cm, which is located inside the core of the «etevt;
— The abysss a multilayer boundary between the outer shell the core of the «electron»;

— The scope is a kind of memory of the undeforntatk of the vacuum area considered here.



Chaotic motion of the internal “particelle” is irssant since its total mechanical enerfgy,

remains, on the average, constant [1]:
Fs>=<T,(xy,z)> + <U, (X,y,z,}> =const (2.2)
where
<T,(x,y,z,} > — average kinetic energy of the internal “fwaite” associated with its speed;
<U,(x,y,z,} > — average potential energy of the internal tipalie” associated with the vacuum'’s elas-
tic properties; the zero potential is in the ceofethe «electron's» core.
Analysis of the internal particelle's chaotic matia [1] led to the derivation of the Schroding-

er equation

Oy __ h 0%y (T ,t)
ot 2m_ or?

p

+<UFL)>¢ Q). (2.3)

where ¢/(r,t) =¢/(x Y,z t) — a wave function, the squared modulus of which fignction of the proba-
bility density of the location of a wandering imat “particelle”;
<U(r,t)>=<Up(x,y,z,}> — average potential energy of an internal “gaite”;
h =1.055-13* J-s — Planck's constant;

p — mass of the internal particelle.
Within the framework of fully geometrized physi¢sd not possible to introduce the notion of

mass expressed in kilograms [7]. Therefore, theelg of Signatures tries to completely exclude this
notion from geometrophysics. As was demonstratdd]irthe7#/m, ratio can be replaced with a stable

characteristic of a random process under considarat

n,= Oo o 1 _ inertia factor of internal particelle, (2.4)
m

where o =Z(oi +oi +0}) (2.5)

W

— squared root-mean-square deviation of a chalytisalndering internal “particelle” from the center

of the core of the «electron» (Figures 2.1 and;2.2)
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— averaged autocorrelation coefficient of the saamelom process.
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Fig. 2.2 Projections of a chaotically wandering internadfticelle” plotted on the Z axis against time
wherea,, 7, are the root-mean-square deviation and autocoeleddius, resp., of this random process

Furthermoref,, T, andU,,, i.e. values expressed in terms of mass unitsiemlaced with the

following massless values in the Algebra of signedu

gp = — —total mechanicatnergium of the internal particelle; (2.6)
m
p
T N . . :
tp = —% — kineticenergiumof the internal particelle; (2.7)
m
p
U, . . : .
Up = o potentialenergiumof the internal particelle. 8P
p

In that case, equation (2.2) can be rewritten Bovs:

<g, =<t, (X,y,z,}> + <u, (X,y,z,}> =const, (2.9)

and the Schrodinger equation (2.3), taking (2.8%) atcount, becomes massless

YY) _ 17, 0%(LY) .
I—at T o +<u, C)>¢(.). (2.10)

In line with the initial condition (2.9), we congida stationary case where an internal “parti-
celle” is moving around the center of the corehaf «electron» and where all average characteristics

this random process, includimgandz,, are time-independent. Therefore, the wave funabiothe in-

ternal “particelle” can be expressed as follows:



W) =p(x y,z)exp{—i%} :w(r)exp{—i m,

g} w(r)ex%—ug—t}, (2.11)
Ty

in this case, the massless Schrédinger equati@f)(i simplified to

’7p 4 z//(r)

E(r) = + <u, (N >y(r), (2.12)

where<u (r)>is the average time independent potererargiumof the internal “particelle”.

Equations similar to (2.12) are well known in quantmechanics. For convenience, we will

present its solutions, referring to monographd g,

3. Internal “particelle” in a potential well
Within the framework of the model considered heam, internal “particelle” with radius
~ 5.810%cm is confined inside the core of the «electronthwadiusrg~1.710"3cm (Figure 2.1).
Therefore, the average potentidergiumof the internal “particelle” can be expressed dpaential
well.”

0, for0<r < 2r,

o, forr>0or r > 2r,. (3.1)

<uy, () >={

Analyzing Equation (2.12) by taking (3.1) into aoog we obtain the following discrete se-

guence of eigenvalues of total mechanaargiumof the internal “particelle” [3]

2

]TZ
g = , (Figure 3.1 ¢) (3.2)

pn 2
8rg

wheren=1, 2, 3, ... is the principal quantum number.
Eigenfunctions for the respectiemergiumlevels (3.2), i.e. solutions of equation (2.12)hwi

average potentianergium(3.1), will be the same as in [3]

W, (r) = r—sm[nmj- (3.3)

6 2rg

Graphs of functions (3.3) and graphs of their sgdanoduli are given in Figure 3(4,b)
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As follows from the functions illustrated in FiguBel b, the center of the core of the «electron»
is the most probable location of the internal “maite” for n = 1. However, in an excited state< 2),
the internal “particelle” is most likely located an indefinite distance from the center of the &ele

tron's» core.

4. Internal particelle in elastically strained vacwm environment

Now let's consider a case where elastic “tensi@vetbps in the vacuum environment of an in-
ternal particelle as it moves away from the ceatdhe “electron's” core (Figure 2.1) pulling tharp-
celle back to the center point.

In the massless geometrophysics developed hehgimdtion of “tension” of a vacuum area
corresponds to the post-Newtonian notion of “stfama limited area of a continuous medium. It is
important to note that the dimensionality of geoimetl “tension” does not include a unit of mass
(kilogram). Assume that the elastic vacuum tensians, increase, on the average, proportionally to
the “particelle's” distance from the center of #sectron’'s» core

< o, () >= kyr, (4.1)



wherek, is a massless factor of the vacuum's elastic tansiten, the “particelle’'s” average potential

energiumcan be approximated as
<u, (#) >= [kyrdr = %kurz. (4.2)

Substituting (4.2) into (2.12), we obtain the wiatlewn “quantum harmonic oscillator” equation

1T, 0°(F) N k”rzt//(F). 4.3) A,

EWYr)=-
pl/l( ) 2 6r2 2 pn /
3y L

n=2

Study of that equation leads to the followir fn =T

u

discrete expansion of eigenvalues of the “paret&ll n=1

377p 1
& =—.|—
total mechanica¢nergium(3, 13]: / "2 \/7?
n=>0
(1) .. eo="—P\P
Eon =11, E(MEJ' (Fig. 4.1) (4.4) \ / SEAL

Fig. 4.1 Equidistant levels of the total mechanical
energy of thespn quantum harmonic oscillator

wheren = 1, 2, 3, ... is the principal quantum numbe
Corresponding to each discrete value of total mechi

cal energium (4.4) is a specific eigenfunction [3, 13]:

ACE %exp{—%}m(r) . (45)
_ () oe”
where H.(r)= \/Z”n!\/l_re P (4.6)

is an™ degree Chebychev-Hermite polynomial, whayes equal to

/]O = ’_;P . 4.7

Now, let's define several eigenfunctions (4.5),cdbsg various average behaviors of a ran-
domly wandering “particelle”, whose deviations frothe center of the «electron's» core (Figure 2.1)

cause elastic tensions in the surrounding vacuyrh3p



WYo(r)= 1 ex;{ rz}, where n=0; (4.8)
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Function forms, (4.9) — (4.10) and their squared modyiff are shown on Figure 4.2.
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Fig. 4.2.a) wave functions for various average states ef‘farticelle’'s” wandering within an
elastically-deformed vacuum; b) probability distrilon densities of “particelle” locations in the
vicinity of the «electron's» core center in theecasnsidered here [3, 13]

It follows from Equation (4.4), in this particulaase, that even in a non-excited state (i.e. with

n = 0), the “particelle’'s” total mechanicahergiumis not equal to zero:

,7p i
Epo 7\/;, (4.11)

the “particelle” will be permanently wandering around the «ele®sotore center, and, therefore, the

probability distribution density of finding it in that aredl be described by a Gaussian function

1 r?
2_ _ 412
[, (r)] Pl ,—”exp{ /13} (4.12)
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(Figure 14.3, upper plot).
Consequently, the root-mean-square deviation opartitelle”, which wanders chaotically

around the «electron's» core center, by taking {4t@ account, is equal to:

1 In
apr :ﬁ/]o = i 4:(3)

By comparing (4.13) with (2.4), we discover that thassless factor of vacuum elastic tension,

kn, is inversely proportional to the average autodati@n factor of the random process, examined

here:
kn = i (4.14)
T

which corresponds to the eigenfrequency of thisatqum harmonic oscillatoik,=fy .

5. Angular quantum characteristics of a wandering particelle”

While moving chaotically around the «electron's>¥ecaenter, a “particelle” permanently
changes the direction of its movement (FiguresaBd 2.2). Therefore, from the viewpoint of claskica
mechanics, such a “particelle” possesses a catgjular momentum

L=%xp, (5.1)
wherer is the distance between the “particelle” and thkectron’'s» core center (the “particelle’'s” own
radius is neglected here, angl= m,v is the “particelle’s” immediate momentum valu@wNlet's
present vector equation (5.1) in component form:
L,=yp,-2zp,, L, =2zp —xp,, L, =Xp, ~yp,. (5.2)
In classical mechanics, the squared moduluseofghrticelle’'s” momentum will be equal to
L* =L+ +L2. (5.3)
Applying a well-known quantum mechanics procedlees re-write the operators of the “par-

ticelle's” momentum components (5.2) [13, 15]

11



O O O
Lx:.ﬁ yi—zi : Ly=fh(zi—x£j, Lz:.ﬁ Xi—yi : (5.4)
i\"dz oy i\ ox o0z I\ gy ~ox

Now, in order to obtain massless operators, |@tislel both members of (5.4) b,

O O O
L :L(yi—zij’ ﬂ:i(zi—xij’ L. :i(xi—yi} (55)
m, mi{"dz dy) m mil ox 0z) m, mil dy °~0x
As a result, by taking (2.4) into account, we aftai
ooon 0 o) v _n,(_0 o) " _n 0 0
=R y——z— |, ly==F| z—-x—|, .= x—-y—|. 5.6
i (yaz ayj a ( ox azj i ( oy axj (5.6)

O | O
where |4, |y, |, are components of the “particelle’'s” specific tigla angular momentum operator,

) L - -
sincel =— =rxv,

In the spherical system of coordinates, masslessatgs (5.6) are expressed as follows

SR/ P 0 0

Ix——i (sm¢—ag ctgd cos¢—a¢j,

0oon 0 . 0

|, =2 — —ctad — |, 5.7
= (cosgﬁag ctg S|n¢a¢j (5.7)
|EI :”_pi

T ag

The operator corresponding to the square of theulnedf the specific relative angular mo-
mentum, that is, corresponding to expression (&3qual to

02 02 p2 2

I :Ix+|y+|z:_/7;[|2’¢, (58
her 2 =1 9 (gngd | 1 o 5.9
where %9 " sing og 00) sin2@ 0¢2 " (5.9)

The generalized Schrddinger equation (2.12) caorésented in the following form [13, 15]
2, o 2 = =
0 l//(r)+,7—2[£p—<up(r)>]1//(r)=0, (5.10)
p

where the Laplace operatar, takes the following form in spherical coordinates

12



19(,0) 0F
02 =—2—(r2—j+—92’¢ , (5.11)

while the wa operator is defined by Equation (5.9).

Substituting (5.11) into the massless Schrodingaagon (5.10), and assuming

@(r.60,9)=RNY(G.9), 13)

we obtain

1 6 zaR 2 2 — 1 2
——|r°—|+—=rle —<u () >=-=0;,Y. 5.13
RZar( arj ,75 [p P() ] Y 6.9 ( )

Since the left and the right members (5.13) depamdiifferent independent variables when
considered separately, they should be equal t@andehe same constaidt,

Therefore, we have two separate equations foratialrfunctionR(r) and the spherical func-

tion Y(8,4), [13, 15]

1o (rzﬁj+{%[5p—<up(r) >]—AZ}R:O, (5.14)
or n, r

2
1 a(. an+ 1 Y v=o. (5.15)

06 sin?@a¢?
The appearance of the radial functigfr) and the eigenvalues of the “particelle’'s” totad-m
chanical energiumg,,, are determined by the specific kind of the averageential energium,

<u,(r)>. Shown here above, for instance, were radial fanst(3.3) and (4.5), whersu,(F) > is

determined by (3.1) or (4.2), respectively.
Solutions of equation (5.15) is well-known in quantphysics; they take on the following ap-

pearance: [13, 15]

1

W}Zéw’ P"(cod) (5.16)

¥"(@.9) :[ 4rr(l +m)!
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d I+m
d§t|+m

d /2
where R (cosé) = ﬂ(l_ 4’2)m

| and mare the orbital and magnetic quantum numbers ctispl/, andé = coL.

I
+ (4’2 —1) are the associated Legendre functions,

Functions (5.16) are suitable for describing therage orbital component of the motion of a

“particelle” that moves chaotically around the «#len's» core center, for any average potential-ene

gium <u () > distributed symmetrically around the center.

Given in Table 5.1 are several function(6,¢) from (5. 16) together with their corresponding

probability densities of the angular distributioha“particelle’s” location in the vicinity of coe-

sponding “electron's” core centd("( 8,¢)F [13, 15].

Table 5.1

Quantum Y,"(6,¢)

numbers

M"(6.9)F

l=0,m=0 | Yy =[1/(4n)]"

Vo) = 1/(4n)

l=1,m=0 |Y,°=[3/(4n)]"*cosH

Y1)F = [3/(4n)] cos 0

I=1,m=1 |Y,"!=—[3/(81)]" sin6 €’

Y1) = [3/(8&0)] sin‘e

l=1,m=-1| Y, = [3/(8n)]Y%sino e ¢

IY1)I= [3/(8n)] sin’®

|=2,m=0 | Y5’ = [5/(4n)]" [(3/2) cosh — 1/2]

V2O = [5/(4n)][(3/2) cos6 — 1/2F

I=2,m=1 | Y, =—[15/(8)]"*sind cosd e'’

Y29 = [15/(8n)] sin“6 cosé

| =2,m=-1| Y, = [15/(8r)]Y%sin 6 cosH & 7

Y2 HF = [15/(8n)] sin“d cos6

1=2,m=2 |V, =[15/(321)]"sirf) &'

Y29 = [15/(32)] sin®@

| =2,m=-2|Y,2 = [15/(32n)] Y%sirf0 2

IY29)F =[15/(321)] sin0

Types of angular distribution3!|']"(0,¢)|2 for different values of orbitdland magnetien quan-

tum numbers are shown on Figure 5.1
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Fig. 5.1 Probability densities of angular distribution“pérticelle’s” location in the vicinity of
the «electron's» core cent¥™8,¢)F for different values of orbital, and magnetian, quan-

tum numbers
In terms of the Algebra of Signatures, the avetagfeavior of a chaotically wandering “parti-

celle” described by a probability distribution diys | (xYy,2)|*=¢ .6,8)|*=|R" (Y™ @.8)[

leads to the curving of the vacuum area around $Soatticelle” with the formation of stable convex-

concave features inside the core of the “elect(igure 5.2).
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Fig. 5.2 Examples of averaged convex-concave featurelseofdcuum area within the «elec-
tron's» core connected with various probabilitytriisition densities of the “particelle” loca-

tion |¢(%Y,2)|°=|R"(r)Y"(@,9)|* associated with different values of the three uan

numbers, mandl.

Therefore, without going beyond classical logie geometric and quantum mechanics presen-
tations appear to be closely interrelated withaommon statistical (quantum) geometrophysics.
Such considerations of the averaged discrete (gugnsets of metric-dynamic “particelle”

states within the «electron's» core may carry ower considerations of other similar local vacuum

15



formations of various scales. Therefore, the Idgacal mathematical apparatus of statistical (quaihtu
geometrophysics proposed here can be applied tettitly of the following phenomena, among oth-
ers: the wobbling of a biological «cell’'s» inn@re, the oscillation of a «planet's» inner coretions
of an «embryo» in a womb, behavior of a fly in egaa tiger in a cell, a «galaxy» within a «mefaga
axy», etc.
Let's select as example any set of two nested isph&acuum formations from the hierarchy
(6.20) in [2]:
core:— a biological «cell's» inner core witg~ 4.910°cm;
“particelle”: — the core of an «electron» with~1.7-10"%m,
or
core= the core of a «galaxy» with~ 410" cm;
“particelle”: — the core of a «star» or a «planet» with 1.410°cm,
or
core= a core of a «metagalaxy» with~ 1.210%° cm;
a “particelle”:— a core of a «galaxy» with ~ 410 cm.
For each of these mutually mobile “core-particeld@@mbinations it is possible to derive dis-
crete (Qquantum) sets of averaged metric-dynamiestamilar to the states of a “particelle” withire

core of an «electron». The difference between thdirie basically in the value of the “particels’
inertial factor,77_, (2.4), which depends on the scale of the phenomander consideration.

As an example, let's evaluate the inertial factahe core of the «electron» wandering chaoti-

cally around the core of a “hydrogen atom” (Fighr&, paragraph 11 in [2]).

2
n,=—=:=:a, (5.32)

whereaoyg, 7er are theroot-mean-square deviation and autocorrelatiorugadiespectively, of a random
process related to the chaotic wandering of theckeln's» core around the «atom's» core.

The following equation is known in modern physics:

16



M 1.055.10%3s 1 9.110%%Kg ~ 1074 m?s, (5.33)

m

e

wherem, is the mass of an electron. According to (2.4, 1

“electron’s” core inertial factor can be assigresialue
g =29 - < 0%mis. (5.34)
m,

Assuming that the root-mean-square deviaignof

the «electron's» core’s chaotic motion in the vigirof the

ydrog ghly equasdo- (Fig the location of the «electron's» core center

) ) inside a hydrogen atom. The maximum of
ure 5.3), it follows from equation (5.34) that this distribution is known to correspond to

r~0.54=0.510""In
r, =202/10%~210%910%=210"s. (5.35)
Now it is possible to derive the average velocityhe «electron's» core motion in the case un-
der consideration: ¥ = ger /7er = 10792:107°= 0.510° m/s.
For comparison, let's evaluate the inertial fadtoa fly, 7m, moving chaotically inside a 3-liter
closed glass jar. In that case, the root-mean-sqigriation of the fly from the jar's centgy, and the

correlation factor of this random process, will be roughly equal tasm,~ 5 ¢cm = 0.05 mgy, ~ 1.3 s,

respectively. Therefore

mr

T 1.3

mr

2
20w _ 0005 _ 1 5038m?ss, (5.36)

Mn =

while the average velocity of its chaotic motion=w o, /tmr = 0.05/1.3~ 0.038 m/s.
Eigenvalues of the total mechanical energium df @dnfined in a jar (potential well) can be

defined by equation (3.2)

77.2 2
mn —”{” n?, (5.37)
8r,

wherer, = 0.12 m is the jar's radius, while the eigenfuntdi for the totakénergiumlevels (5.37) are

expressed by (3.3)

17



v, (1) = ﬁsin(”’”
8 2r,

This conclusion is experimentally verifiable. If flen a fly in a jar and play the film back at a

J | 38)

higher speed, we will be able to see the distrdyubtf the fly's average positions in the jar. Thibe
experiment can be repeated with different inputddiions, such as temperature or pressure. In that
case, under the predictions of Alsigna, differevgrage distributions of the fly's locations will bb-
tained. Of course, such atrocious treatment of alsmeven for research purposes, is not in lindawit
the moral principles of the Algebra of SignaturBg [

In our third example, let's consider a biologiceg¢lt.” Chaotic movements of its “core” may
have the following average characteristies; ~ 3.510° m, 7, ~ 1.210° s, and, consequently,
nh~ 20.410°m%s. In this example, however, the oscillating “caielinked with the “cell's” cyto-
plasm. Therefore, the “core's” deviation from ngial position in the cytoplasm leads to the bupd

of elastic tensions pulling it back. Therefore, tigenvalues of
such a biological “cell's” total mechanicahergiumcan be ap- \ @ '
proximately defined by expression (4.4) § Mg %/
o &4 AN
Ehn _”h\/;(n + 2)’ (5.39) f W

Fig. 5.4. Discrete set of 3D
while the eigenfunctions for thesmergiumlevels are describec Lissajous curves

n /] 2 n

where A, = /% , Wherek;, is the massless factor of elastic tension of a biological “celf&plasm.

It is also known that tree boughs move according to the bigsajurves under the influence of

wind (Figure 5.4).
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Therefore, the Algebra of Signatures argues theattlerage behavior of macro objects is basi-
cally similar to that of microworld objects proviiéhat conditions are equal, which means that in ce
tain cases the methods and mathematical tools aritgm physics can be applied for describing dis-
crete sequences of average states of macroscgpittsb

There are five quantum numbefsn, |, m, s, in statistical (quantum) geometrophysics that
largely determine the scale and discrete variaht@verage manifestations (configurations) of each

stable spherical vacuum formation since all of temin permanent chaotic motion (Figure 5.6).

"particella"

"electrom's"
core

-
"true center"”
/ of vacuum

/ formation

Fig. 5.6. Chaotically wandering “core” of a vacuum formatiwith
a “particelle” chaotically wandering inside the eor

6. «Muons», T -«leptons» ande, s, t, b-«quarks»

It is part of modern physics that collisions of tpdes

moving at high velocities result in the birth ofwngarticle-

antiparticle pairs. /
“

For example, let's consider the birth of a muotiraumon /

. . + _ . . Fig. 6.1. Collision of accelerated electron
pair (Figure 6.1) and & -lepton ~-antilepton, which form upon _ -1 positron sometimes leads to the birth

o ) of muon-antimuon orr™ - lepton —7 -
the collision of an electron and a positron: antilepton pair
ee -, e 1T, (6.1)

The muon and-lepton are different from electrons only in ternisnass:
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o 0.511 MeV, m,=105.658 MeV, m=1.984 GeV, (6.2)
while all their other characteristics (charge, sggpton number, etc.) remain the same.

Many researchers considered muons afgptons sd'redundant” in the structure of material
world that they could not help asking: “Why didtur@ need those participles at all?”

According to the Algebra of Signatures (Alsignajuons», 7 -«leptons», «antimuons» and
T -«antileptons» are not at all new patrticles, bet thie same very «electrons» and «positrons», but
with their “cores” being in an excited state. Irh@t words, in terms of Alsigna, the “muon” and
r'-“lepton” are, respectively, the firsh € 1) and the second € 2) excited states of a free «electron»,
while the «antimuon» and -«antilepton» are, respectively, the finst5 1) and the secona € 2) ex-
cited states of a free «positron».

The same refers to «quarks», introduced in [2] @xt0) of [8]: in Alsignac- andt-«quarks»
are the first and the second excited stateswskquark», whiles- andb-«quarks» are the first and the
second excited states oflacquark».

In order to prove these hypotheses, Alsigna praptise following experiment. If we keep a
certain amount of electron plasma in a magnetip twader hard radiation, then, in line with Alsigna,
the congested «electron» cores may undergo transitito excited states. In the latter case, thelevho
volume of irradiated electron plasma may acquiréetient physical properties.

Another confirmation for the basics of quantum getwaphysics proposed here could be the
acquisition of «leptons» and «quarks» of the foufitth and higher generations, since under (3.2l a
(4.4) there are more than 3 levels of the «parksb energium levels,,

The reason for the higher “interance” [in massigsantum geometrophysics, the analogue of
mass (6.2)] of <muons» anekleptons» is likely to be related to the complicatof the average met-
ric-dynamic configuration of the vacuum area batbide and outside of their excited cores. Metric-
dynamic aspects of inertance of elementary “pasicivill be considered in the following article of

the series “Alsigna”.
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It is interesting to experimentally check whethee ttmuon» and «antimuon» created by the
collision of an «electron» and a «positron» (Fig@d) remain in an “entangled” state. For this pur-
pose it will be necessary to find out if the «msertransition into «electron» automatically leads t
the «antimuon's» transition into a “positron”, orhgther nature allows asymmetry in the number of

simultaneously existing «muons» and «antimuons».

7. Conclusions

Article [2] introduced (in terms of Alsigna) metrdbynamic models of 16 types of «quarks» (to
be more precise, 8 «quarks» and 8 «antiquarks»yhath it turned out to be possible to “construct”
all kinds of «leptons», «mesons» and «baryons» kniovthe Standard Model. This article takes into
account the omnipresent vacuum fluctuations areagits to study regularities in the chaotic behavior
of the cores and “particelles” of the abovementibloeal vacuum formations.

Vacuum fluctuations are non-removable in princifleis means that the axiomatic probability
of quantum physics is as primary as is the detasmirof differential geometry, which derives from
the presumption of continuity of the vacuum.

The equal coexistence of probabilistic and deteishinprinciples is forcing Alsigna to devel-
op “statistical geometrophysics,” which leads toaaerage description of discrete (quantum) geomet-
ric structures. The reason is that discrete setsvefage states of chaotically wandering “partessl|
(Figure 2.1) are inevitably manifested in the agerenetric-dynamic (convex-concave) configurations
of vacuum areas both inside and outside of thesodfigures 5.2 and 5.6).

Now let's outline the basic notions of the Alsign&tatistical (quantum) geometrophysics,”

which are presented in [1, 2, 5 — 11] as well abig work:
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1). The notion of mass with the dimensionality ~f
“kilogram” cannot be introduced into the completggome-
trized physics, in principle. Therefore, the notadmmass has

to be excluded from all geometrophysical percepstidn-

stead of point particles with mass, charge, spio,, ¢he

Alsigna's geometrophysics considers spherical cofréscal

\\\\&:""'. ~
vacuum formations (Figure 7.1). Introduced in aisimvay / gﬁ
Fig. 7.1 The ‘core of an Alsigna local
vacuum formation is the analogue of a

) . ) ) . point material particle in the post-
ertance”(analogue of a point particle's inert masSjtensi-  Newtonian physics.

are such geometrized notions [5-11, 2] as the Core

ty of a source of radial vacuum flows” around tloeeqanalogue of a point particle's chargegver-
aged angular velocity of core motiganalogue of a point particle's spimfidisplacement of vacuum
layers” around the cor@nalogue of a point particle's gravitational mastj)e core's énergium (a
massless analogue of a point particle's enerff@nsion” of a vacuum continuuif@ massless ana-
logue of elastic tensions in a solid medjuteffect” (a massless analogue of forcejc.

Masslessness of the Alsigha's geometrophysicsoissenrg most vehement criticism from the
school of post-Newtonian researchers. However ehaso have already grown aware of the impossi-
bility to resolve the problem of geometrizing tlméion of “mass” join the ranks of Alsigna supporer

2). The vacuum state is provisionally considere@ asntinuous elastic-plastic pseudo-space.
No actual substantiality of this pseudo-space iang way manifested (i.e. it is not observed in any
experiments). At the same time, such consideraifahe vacuum allows: first, to objectify this sub
ject of research; and secondly, to apply the ndsthad differential geometry and continuum mechan-
ics to the vacuum state.

3). The vacuum state is not a single continuousigsaspace, but a result of additive overlap-
ping of 16 continuous pseudo-spaces, i.e. 4D spaitbsdifferent signatures or topologies [7]. The
overlapping (superposition) of the 4D informati@nsuch that on the average the values in the signa-

ture for the vacuum state are zero. In other watdang their additive superposition these 16 gomi
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ous pseudo-spaces completely compensate eachsothmenifestations down to the full absence of
characteristics. In the same manner, the fluctonataf the vacuum state are such that are, on #re av
age, identical to their compete absence. Eacheasfet 16 continuous pseudo-spaces can be described
as a superposition of another 7 sub-spaces witlrdift signatures (topologies), and such identifica
tion of sub-spaces can be indefinitely continugld Therefore, the Alsigna's vacuum state is an infi
nitely overlapping, continuous, all-fluctuating pge-space, which is, on the average, “nonexistent.”
For that reason, the Alsigna's vacuum state isaBed the “Void” [7, 11].

4). If anything appears out of the Void (i.e. trecyum state) it should necessarily appear in
two mutually opposite forms: “particle” (local coexity) — “antiparticle” (local concavity); wave —
antiwave; motion — antimotion; deformation — anfiienation; dimension — antidimension, etc. These
pairs of “features” and “antifeatures” are absdiusymmetrical in relation to the Void, but theynca
be phase-twisted and/or rotated against one anathdifferent angles. These rotations and phase-
shifts of vacuum features and antifeatures predwter the existence of worlds and effects acting
within them. The development of these worlds ig@&dgal process of increasingly sophisticated en-
tanglement of the features and antifeatures inimgbthem. But no matter how these worlds can be
intermixed and interrelated, the global averagihgazh one of them is identical to the original ¥oi

5). If we view a vacuum state as an objective feaa continuous pseudo-space) that is locat-
ed outside of the observer, it turns out that tbgon of “time” is not attributable to such a stdéa
attribute of the external reality). In that casemé” is only an “arithmetization” of the feelind dura-
tion, which is only an attribute of an external ebv&r. In other words, there is no space and ne tim
external to the observer’s reality (these are oméyhematical abstractions generated by the obsgrver
consciousness); only a continuous pseudo-spacetsamiovements exist. Therefore, Alsigna had to
change the approach to interpreting the componaintee metric tensor. In this situation, nonzero
components of metric tensgy; determine the curving of the 3D local area of vawistate (or any of
its 3D sub-spaces), while zero components of métnsorgoeo, J.0, Jos are related to the accelerated

linear or rotational motions of the same curvedalo@cuum area. Therefore, in the Alsigna formal-
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ism, a vacuum state (as well as all its sub-spandssub-sub-spaces) is identified as a continubus 3
elastic-plastic pseudo-space, where any curvingsabcal area inevitably gives rises to acceletate
linear (laminar) or rotational (turbulent) motiom the same area. Therefore, Alsigna “sees” that in-
travacuum (pseudo-substantial) flows, which aréeddlintravacuum currents” form in any curved ar-
ea of vacuum (or in any region of one of its subegs). Any curvatures of any local area of a 3D vac
uum state give rise to intravacuum currents, aodyersely, the formation of an intravacuum current
inevitably leads to a local curving of the respee8D sub-space of the vacuum state. Moreover-inte
relations between the zero and nonzero componémi®inic tensoig; are determined by the Einstein
field equations. The four-dimensionality of the &®in mathematical apparatus (to be more precise,
Riemannian differential geometry) is connectedwith the curvature of space-timel{ich, accord-

ing to Alsigna, does not exist in external readiyit is only an attribute of the observer's lodittank-
ing), but with the simultaneous inclusion of the curvatof the local 3D area of pseudo-substantial
space and its own velocity and acceleration. la$e note that in Alsigna, intravacuum currents are
described with the help of quaternions, and theetus (flows) of various intravacuum sub-spaces are
added together by the rules of Clifford Algebra.

6). The vacuum state is in the permanent procesxtoémely sophisticated and multifaceted
fluctuations, which are present everywhere. Thésguations are connected with enormously com-
plex overlappings inside vacuum spaces, sub-spatsub-sub spaces of various topologies as well as
with chaotic vibrations of each of these spacessdspaces. The multifaceted vacuum fluctuations
may be caused by the Colossal Determined (or Ryedeted) Processes related to the Global For-
mation of the Universe. However, these Processesal'entangled” on the local level of the vacuum
state that Alsigna is forced to treat these praaseas random ones and apply the methods of prebabil
ity theory and mathematical statistics to theirdgtuThe attitude toward the vacuum state as an ex-
tremely complicated fluctuating and overlapping towmous pseudo-space is forcing Alsigna into de-

veloping a statistical (quantum) geometrophysidabl® features and antifeatures “woven” of that
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multifaceted pseudo-space and their stable meymesthic configurations are identified through the
extremality of its action and entropy.

7). The condition for the existence of the averagble vacuum formations is determined by
the “Action Extremum Principle”, which is closelglated to the “Entropy Extremum Principle” the
“Principle of the Conservation of the Integralstbé Averaged Motion of Local Vacuum State Re-
gions” and the “Principle of the General Invariamfethe Statistical Geometrophysics in Respect to
Random Transformations in Four Coordinates”. Framdbove principles it follows that the average
(frozen) geometric “frame” of the stable local vaouformations must satisfy the Einstein Field Equa-
tions (which are second order differential equat)d], while the averaged behavior of the cores of

these vacuum formations must satisfy the Dir~~
Leptons Quarks
o, T

Relativistic Equation, which, in the condition ofn Ve, Vy Ve

(compared to the speed of light) velocities (i.aver

propagation velocity through the vacuum state) si Y

" Photons

plifies down to the Schrodinger equation [1]. Altc
gether, the deterministic Einstein vacuum equatic
and the probabilistic Dirac or Schrodinger eqt FHiges boson
tions, derived from the above common Action E Fig. 7.2.Elements of the Standard Model
tremum Principle, Entropy Extremum Principle, Prohe of the Conservation of Integrals of the Av-
erage Motion of the Vacuum State Local Areas amacile of the General Invariance of Statistical
Geometrophysics in Respect to Random TransformationFour Coordinates, form the basis of
massless statistical (quantum) geometrophysicghargdensure the completeness of the Alsigna's logi-
cal apparatus.

The presumptions of the statistical (quantum) georplysics, Alsigna, as outlined above, call

for a radical revision of the standard physics gaa, which can be justifiable only in case of Hgso

ing certain problems of modern physics and preatictiew effects.
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The solution of one such problem is proposed is Work. Within the framework of statistical
(quantum) geometrophysics, Alsigna, «muons» angdgptons» may be interpreted as the first and
the second excited states of «electrons» and «posit respectively;c- andt-«quarks» are, respec-
tively, the first and the second excited statea of«quark», whiles- andb-«quarks» are the first and
the second excited states al-aquark».

Therefore, Alsigna is able to explain metric-dynammodels of all «quarks», «mesons», «bary-
ons» and «bosons», which are included into thedatanModel [2] (Figure 7.2), including the metric-
statistical models of «muons», tau-«leptons» dkages, b, ¢, t -«quarks».

Still remaining, but beyond the scope of this wate all kinds of «neutrinos»:, v, , v, the
metric-dynamic models of which are planned to besatered in the following article in this series.

The author would like to thank V.A. Lukyanov and/SPrzhigodsky for reading the draft and
making valuable remarks.

The author would like to thank V.A. Lukyanov and/SPrzhigodsky for reading the draft and
making valuable remarks, and David Ried and Aleraritbndorsky for the highly professional and
creative translation of the text into English.

The Appendix (Glossary of special notation and teatlogy) was compiled by David Reid,
who also collaborated in the introduction of sel/asav terms.

Appendix
Glossary of special notation and terminology

Algebra of Signatures , also “Alsigna”. The struetwleveloped by the author to designate a

space consisting of a variable metric or pseudametr

Signature: A class of metrics, designated by apfetibo, bi, by, bs), such that for 0 € < 3,
bi [{-, 0, +}. This designates the metric or pseudometnduced by an equation of the form
[dgi*= aofi(s,p)dxo” + auf2(S,p)dxe” + anfs(S,p) dx” + asfs(s,p)dx’, wherea 0{0,-1,1}, sOS p is a fixed

parameterfi(s,p) are positive definite functions defined 8x{p}, andS p, andx; are specified further
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in the designated metric or pseudometric. Furtletaits are elucidated in [2] and other papers ef th
Alsigna series.

Use of quotation marks. Elsewhere in the Alsigréesetwo types of quotation marks are used.

Besides the usual “...", guillemets... » are used for each of a class of particles whichdafmed as
structures of the background vacuum. (See “vacuammdtions”). In this work, both types of quota-
tion marks are represented by the usual ones, asnifasion is likely to ensue.

Vacuum formations: also “spherically symmetric vacuformations”, or “spherical vacuum

formations”. Particles defined in terms of a clagsnetrics or pseudometrics on the structure of the
vacuum. The primary aim of the Alsigna series igltecidate the structure of these particles. The im
age of a bubble serves as a rough intuitive picture

Particelle: one of the substructures of the vactammations.

«Electron», «muon», etc. Structures of the vacudmechvform a basis for explanations of the particles

of the Standard Model; the name chosen indicatestdndard particle most directly connected to the
structure.

Inertance: one of several characteristics of tlwiven formations which are analogues of simi-
larly named characteristics of standard partideg, “inertance” is meant to evoke “intertial mass”
Other quantities are named in the text.

n™ generation of particles: an extension of the diassion of elementary particles used in the

Standard Model.
Vacuum state: not to be confused with the vacuumtesas usually defined. Also termed
“void”. Detalls are outlined in the text.
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