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Abstract: The aim of the article is to develop geometrized physics waEcuum

on the basis of two basic postulates: 1) the constancy of the speed of light (more
precisely, the speed of propagation of electromagnetic wavettleimacuum;

2) thedvacuum balance o n d iassoc@ateddwith the statement that only mutual-

ly opposite formations are born from the vacuum, so that, on average, they com-
pletely compensatef the manifestations of each other. The Algebra of signatures
is proposed as a mathematical basis for geometrized physiescium.
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FOREWORD
In modern natural science, there are two mutually opposite concepts, which are
called: "idealism" and "materialism".

1 Materialistic paradigm

Within the framework of the modern materialistic (mechanistic) paradigm, the ini-
tial element of everything that exdsis energy, which at a certain stage of the expansion
of the Universe was partially structured into elementary particles.

Further, from the complete set of elementary particles (photons, electrons, protons,
neutrons and other leptons, baryons and mesitiag) make up the Standard Model,
chemical elements (atoms and molecules) are formed.
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In turn, the most energetically favorable inorganic and organic chemical com-
pounds are formed from atoms and molecules due to bibdlens of random interac-
tions.

Within the framework of this mechanistic concept of acts of interaction of chemi-
cal elements for 13.8 billion years of the existence of the Universe, there is such an ex-
tremely huge amount that a very small probability of the accidental formation of a biolog-
ical cell and, therefore, all living things, is an almost inevitable event.

Pragmatic materialism considers Life as the most beneficial and stable form of ex-
istence of selbrganizing matter, which is able to independently multiply, adapt and im-
prove in theprocess of struggle for existence (i.e. evolution).

2 ldealistic paradigm

Within the framework of "idealism" the Cause of all that exists is the Colos-
sal Infinite REASONING (OMNIPOTENT GOD), WHICH Created Everything
from Nothing (Emptiness). The Act @freation from EmptNonexistence occurs
through a consistent and gradual Embodiment of the Ideas of Infinite REASON.

In Judaism, the INTELLIGENT SOURCE of Being is called EIN SOF, Ba-
ruchu (INFINITE, Blessed is HE), in Chinese philosophy it is DAO (THE WAY
of Everything), in Greek philosophyRelentless ROCK, in Hinduism BRAHMA
(CREATOR), in Islam ALLAH (POWERFUL) ...

One of the scientific aspects of the idealistic paradigm is associated with the
study of the properties of vacuunas an attribute of EMPTIRISS manifested in
our world.

Vacuum, in the context of empty space, is at the heart ofClifferd-
EinsteinWheeler program aimed at the complete geometrization of physics.

Within the framework of this program, it is assumed that nothing happens in the
world around us except curvatures, displacements and rotations of local and global areas
of empty space (i.e. ideal vacuum).

The works of B. Riemann, T. Le@ivita, A. Einstein, J. Wheeler, G. Weil, F.
Klein, E. Cartan, R. Weizenbeck, D. Vitali and maniler researchers were aimed at
the geometrization of physical fields.

In Russia, academician A.A. Logunov, who developed the Relativistic theory of
gravity [3], and Academician of the Russian Academy of Natural Sciences G.l. Shipov
[2], who used the tedid formalism of the geometry of absolute parallelism for the devel-
opment of vacuum physics and, in particular, the theory of torsion fields, made signifi-
cant contributions to this area of research.

It should be noted that the complete geometrization o$ipkynevitably entails a
complete rejection of the concept of mass and the unit of measurement "kilogram”, since
this heuristic concept, corresponding to
is absolutely impossible to introduce into getmzed physics.
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At the same time, the rejection of the concept of mass completely destroys the ide-
ological foundations of materialism. The complete geometrization of physics entails the
rejection of any manifestations of substance. At the same time, wiacae with the
problem of the illusory nature of the surrounding reality, since the covariance of differen-
tial geometry and tensor analysis allows each time to choose such a local frame of refer-
ence in which any deformations, displacements and rotatibtteeovacuum are com-
pletely absent.

It is not possible to eliminate the curvatures of the vacuum globally, but when all
vacuum manifestations are averaged, the completely geometrized world completely dis-
appears.

In other words, the entire geometrized Wasld average is EMPTY, and its local
manifestations have the properties of holography, or the result of theXpikssed Im-
agination of a Colossal JUSTICE.

As the mathematical apparatus of the ighbmetry of the vacuum, the Al-
gebra ofsignatures is ugk built in accordance witthe algorithms for Revealing

the Great and Terrible Name of the ALLHIGHESTS -1 (TETRAGRAMMA-

TON), which are presented [d2].
she " Al gebra of signatures does not Kk
claimed). On the contrary, the Algebra of signatures delights and fills the Soul
with the Triumph of Heavenly Wisdom hidden in the Great Haeiter Name of
the CREATOR (TETRAGRAMMATON)

S XS -|

Algebrain translation from AramiteAL is GOD, Geboris Powe
(i.e. Algebra is the Power of the CREATOR)

1 INTRODUCTION

The object of research in this article is vaculimthe modern physics there are:
atechnical vacuum (the rarefied gag)physical vacuum (the lowest energy state
of a set of scalamector, tensor and spinor quantum fieldspstein's vacuum (in
the general case, a curvedidnensional spaeBme continuum surrounding neu-
tral or charged physical bodieg)perfectvacuum (32dimensional space in which

there are no curvatures and paes at all).
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At the beginning of this article, the main attention is paid tgp#réectvac-
uum, with the aim of creating a mathematical apparatubke "Algebraof sgna-
ture", suitable for study afhe vacuum phenomena and the developmentef
"zero" technologies. Then the possibilities of describing the cuegidn of the
vacuum are considered.

This work is based on three experimentally confirmed facts:

1) electromagnetic waves propagate ipaafectvacuum withthe speed of
light c =299 792 458 m|s

2) dl averaged characteristics in theam of a flaareaof the perfectvacu-
um (momentum, angular momentum, spin, etc.) are equal to zero.

3) If something is born from perfectvacuum, it must be in a mutually op-
posite form (a particlendan antiparticle, a convexitgnda concavity, a wave
andan antiwave, etc.).This property bthe perfectvacuum in this article is called
the "vacuum balance condition”.

The foundations of the Algebra signatures, developed in this work, are
proposed as a universal mathematical apparatus suitable not only for studying the
properties of vacuunfut also for any other liquid, solid and gaseous continuous
media in which wave disturbances propagate at a constant speed.

The Definition numbers othe new terms introduced in this article are pre-
sented in Table 12.1.

2 THE PERFECT VACUUM
2.1 Longitudinal stratification of a perfect vacuum into /ms-vacuums
Conside a 3dimensional volume of perfectvacuum ("vacuum"), in which there

are no particles, curvatures and vacuum flows.

Definition 2.1.1The grfectvacuum for brevity we will call "vacuum".
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Let's probe the volume o& "vacuum"by laser beamshat sentfrom three
mutually perpendicular directions, so that they formdir8ensional cubic lattice
(seeFig. 2.1a,b).

& m+n

9 b)
Fig. 2.1a) The 3dimensional lattice in a "vacuum", which consistghef mutually perpendicular
monochromatic light beams with a wavelength’ gf; an edge length of a cubic cell of this lattice
is Ghn~ 1C*/ mn; b) Laser light beams in a vacuum, visualized with a finely dispersed sol

The ght beams in @erfectvacuum arenot visible, but they can be visual-
ized using a finely dispersed sol with a low density (i.e., using small particles with
a size of several microns, evenly distributed throughout the entire investigated
volume of the "vacuum", so that the distance betwbenparticles much larger
than their size).

Of course, a "vacuum" filled with a transparent sol is nperéiectvacuum.
Neverthel ess, the rays pmprbetpeemgthetparticlesn t he
of a lowdensity sol), while the influence of tisel on the metriclynamic proper-
ties of the macroscopic volume of the fAv;

A laser light beam is a narrowly directed propagation of raromatic

electromagnetic waves with a wavelength afs, taken from the range &éngths
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g =10%-10°cm. Therefore, a-8imensional lattice consisting tfie mutually
intersecting laser beams with an edge length of one cubiti.ceft 100/ .4.5(see
Fig. 2.1) will be called/ -4.5-vacuum (013D-45-landscape).

L e tdivide the entire range of lengths afi electromagnetic (light) waves
into a set of subangesy’ =10"- 10" cm, wheren = m+1 (mandn are integers).

Definition 2.12 In this article, the eikonabf an electromagnetic wave with
any wavelengtll is called "a ray of light with/". In this case, the eikonal means
the shortest distance from the point of emission of a light (electromagnetic) signal
to the point of its reception. The diameter of an midi.e., a beam of light) de-
pends on the wavelength of electromagnetic radiatioand is determined by the
distance from the center of the eikonal (beam) to an obstacle that can take away
at least 1% of the energy of the electromagnetic (light) sigaabmitted from the
emitter to the receiver antenna aperture.

Similar to how it is shown ifrig. 2.1, we probe the investigated volume of
the "vacuum" with other monochromatic light beams with wavelengthdrom
all subrangesp’ = 10™1 10" cm. As a result, we get an almost infinite number of
nested/ mn-vacuums i(e., 3Dmn-landscapesjseeFig. 2.2)with edge lengths of

theone cubic cellGy, ~ 100/ mp.

&€ men
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Fig. 2.2 Discrete set of m rvacwums(3Dm,rlandscapes) of the samalBnensionabrea
of the"vacuunmi, where/ mn > / 1)+ 1> 1 me2)ne 20> 1 me3)ine 3)> 7 (e a)ne 4)...

The size of the edge of the cubic celtloé each/ mn-vacuumapproximately
equal(seeFig. 2.2)

Ghn ~ 100/ mn (2.1.1)
follows from the condition of applicability dhe geometric opticdmn Y O, i . e.
when the thickness of the light beam is much less than the value of the corre-
sponding cubic cell, and it can be neglected.

Definition 2.1.3 /msvacuum is a 3R rlandscape in vacuum, the geodetic
lines of which are monochromatic beams of light with a wavelerdgth
(seeFigures 2.1, 2.2)In this case, the thickness of the light rays can be neglected
in comparison with the dimensions of one célhe 3D, rlandscape. That is, the
condition of applicability of geometric optics is satisfied.

Definition 2.14 Longitudinal stratification othe"vacuum” is a representa-
tion of a 3dimensional volume dhe "vacuum" in the form of an infinite discrete
sequencé mrvacuumsgeeFig. 2.2), nested into each other like nesting dolls.

The question remains opéeinAre there physical limitations on the frequen-
cy ¥ or wavelength/ of the electromagnetic wave, both in the direction of their
increase and in the direction dheir decreasing? If the critical values
Ymax= 2 Mma and ¥min= 2" Mmin exist, then these will be very important char-
acteristics of thevacuune. As of today, as far as the author knows, the frequency
range of the observed electromagnetic waves extends from 2 HZ?tdz Qvhile

restrictions on the expansion of this rangeehaot been experimentally found.

2.2 The geodetic lines of the curved regiomf a / mn-vacuum
Long-term experimental data show that monochromatic light rays in the entire
observed wavelength rangg propagate in a "vacuum" with the same speed of

light c and according to the same laws of electrodynamics. Therefore, if the stud-
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ied area of the vacuum is not curved, then allhn,-vacuums (i.e. 3Dmn-
landscapes) will be represented as ideal cubic lattices (Fig. 2.1, 2.2), since the
geodesic lines of all these noaorved/mp-vacwmsare direct rays of light. In this
case/ mn-vacwmswill differ from each other only in the length of the edge of the
cubic cellGhn ~ 1% / mn (seeFig. 2.2).

However, if the investigateareaof the vacuum turns out to be curved, then
all / mn-vacuums will slightly differ from each other due to the thett light rays
with different wavelengths have different thicknesses. This circumstance is theo-
retically substantiated in the sections of geometrical optics related to the resolving
power of optical devices ¥11§, and is confirmed by experimental dasz€Fig.
2.3).

221nm
132nm 5
W 58nm
/ = 650 nm / =390 nm / =240 nm /=170 nm

Fig. 2.3 Experimental data on the thickness of the laser beam as a function of the wavéleigth
the corresponding monochromatic radiatiseeURL https://tech.onliner.by/2006/03/29/blu_ray_akout

In this case, each/mn-vacuum (i.e.a 3Dmpn-landscape) will benique cee
Fig. 2.4), since the vacuum irregularitieg averaged within the thickness of the

probing light beam.


https://translate.google.com/translate?hl=en&prev=_t&sl=ru&tl=en&u=https://tech.onliner.by/2006/03/29/blu_ray_about
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Fig. 2.4 The curved m rvacuum is nested in the curvéd-vacuum {n case/tq >/ mn)

Therefore, ond mn-vacuum is only one-8imensional "cut" of the curved
vacuumarea For a more complete descrigt of the curved areaf the vacuum,
it is necessary to have an infinite setlué curved/mn-vacwmsnested into each
other.

Thus, the investigated local volumetbe vacuum is an infinitely complex
system. The situation, however, is simplified by the fact that in the entire studied
range of electromagnetic wavelengths from 10m t8°i all / mn-vacuums obey
the same physical laws. Therefore, the knowledge obtained in the study of one
/«-vacuum automatically extends to all otlieqn-vacuums.

Below, the mathematical apparatus of the Algebraigriatures is devel-
oped, intended foihe study of docal volume of only oné mn-vacuum. But this
apparatus is suitable for investigating not only/aJk-vacuums, but also any oth-

er continuous media in which wave disturbances propagate at a constant speed.

2.3 The sxteen rotating 4-bases

Letés return to the consideration of the rmamved volume of one of the
/ mp-vacwms (seeFig. 1.2) and investigate the "vacuu@'eain the vicinity of
the pointO (Fig. 2.5).
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ga‘)i—:”

Fig. 2.5 The wdistorted 3Dlattice of the / mrvacuum, revealed from the "vacuum” by means of
mutually perpendicular monochromatic light beams with wavelergth The cells of such a
lattice are cubes with an edge lengthof approximatelyLQ?L/ mn

Let's calculatdhhow many orthogonal-Bases originate at the central paint
(seeFig. 2.3).

If we extract 3bases from poin© in the different directions, then it turns

out that there are 16 of theisegFig. 2.6a,b).

\ 4
h

N
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v v

O 8 internal3-bases b) 8 externaB-antbases ¢) theadjacent cubic cells
Fig. 2.6 The sxteen 3bases at the central poidtof the studied volumef the / mn-vacuum

The eght 3-bases belong to the cubic ciedlelf (seeFig. 2.G), andtheeight
opposite 3antibasises belong to adjacent cubic cekFig. 2.6b,C).

According to thé'vacuum balance conditionany movement in a vacuum
must be accompanied by a similar anbvement. Therefore, if onelfasis(to-

gether with a cubic cell) rotates clockwise, then this is possible only if an adjacent
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cubic cell (together with 8-antibasis) rotates counterclockwise in the same way,
since there is no fulcrum in vacuum.

In connection with the above, it is convenidat the eight 3bases gee
Fig. 2.6a) to add a fourth time axis and tothe eight 3antibasesdeeFig.2.&)
add a fourth artaxis (i.e., the opposite axis) of tifhe.

Definition 2.3.1 The time axig is determined by the angulérequency of
rotation of the 3basis (ie., the number of revolutions per unit of time). The rota-
tion of a 3basis with a constant angular velocity is described byBX@ression
d/ /dt =w (where; and w are the phase and angular frequgrof rotation of the
3-basis). Integrating thi€xpression, we get the time axis/ /w. The rotation of
the 3antibasis in the opposite direction similarly forms the -intie axis
it=/ Iw.

Thus, at the considered poifitof the / mn-vacuum geeFig. 2.5) there are

8 + 8 = 16 orthogonal-Bases shown iRig. 2.7.

Fig. 2.7Sixteen 4bases starting at point O obtainedaulditions tahe eight 3bases of
the fourth time axi$ andto theeight 3antibase®f the fourth anttime axisi t

The sxteen 4bases geeFig. 2.7) can be obtained within the framework of

the theory of propagation ttie electromagnetic waves.
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Let six monochromatic rays @ light with circular polarization come to
point O: two opposing rays o light from each of three mutually perpendicular
directions 6eeFig. 2.8).

. zZ Z
ES i
S,
Y
Fy(‘) E.f )
Y En.’ / Y
A
=
X ED iy .
O) b)

Fig. 2.8a) The rays and antiays (i.e, the counter rays) o& light with circular polarization, arriv-
ing at pointO from three mutually perpendicular directioy;Two 3-bases consisting tiie elec-
tric field vectorsEl?, E,(", E/* andE"), E,¢), E.") rotating atthe point O in mutually opposite
directions

Fromthe six rotating electric field vectoBs™,Ex"), E; M andExX"),Ef) E,

shown in Fig. 2.6¢can be formedhe 16 rotating 3bases. Of these: eightbiases

rotate clockwise, and eight othebases rotateounterclockwise.

3 THE ALGEBRA OF STIGNATUR
3.1The dignature of an affine 4dimensional space
Each of the siteen 4bases shown in Fig. 2séts the direction of the axes of the
4-dimensional affine space.

In order to introduce the characteristgtignaturé of these spaces, we first
define the concept of "base".

L es éhoose from the sixteen-béses shown in Fig 2.7, 4basis
e a®e®e® and call it fibaseo.

We will conventionally assume that the directions of all unit vectors of the
"base" are positivesgeFig. 3.1)

a(5)(90(5)’61(5)’62(5)193(5)) = (+1’ +1,+ 1, +1) {+ + + +}_ (3_1)
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Here we have introduced an abbreviated notation {+ + + +}, which we will
cal | dignateed fiof the affine basiaedie,defi ned

Abaseo) .

X ct

Fig. 3.1The dfine space, the directions of the axes of which are given by-Hesi4
6®)(e®,e.®,6,9,e5%) with the gignature {+ + + +}

Definition 3.1.1 The"stignature" of a 4basis is a set of signs correspond-
ing to the directions othe unit vectors in relation to the directions of the corre-
sponding unit vectors of the fAbaseo.

With respect to the directions of the unit vectors of the "base’ (he
4-basise®), the unit vectors of all the otherbéises shown in Fig. 2.7, have the

following signs andhe correspondingtgynatures:

v ab3lle
4-basis Stignature 4-basis Stignature
a(l) (eo(l), el(l), ez(l), e3(1)) = a(g) (90(9)’ el(g), e2(9), e3(9)) =
=(1, 1,71, 1) - {++71 +} =(1, 1,71, 1) - {i +7 +}
e(z) (63(2), 81(2), ez(z)’ Q,’(Z)) = a(lo) (a)(lo), el(lo), 62(10), eg(lo)) =
=(1,71,71,71) - {+717117} =(1, 1,i1,711) - {Tii71}
3(3) (%(3)’ e1(3)’ 92(3), 93(3)) = e(ll) (eo(ll)’ el(ll)’ ez(ll), es(ll)) =
= (1, 1,71, 7 1) - {+ + 7 .I.} = (.I. 1, 1,71, 7 1) - {'I' + 7 'I'}
3(4) (63(4), e1(4), 92(4)’ e\,f“)) = 3(12) (a)(lZ), e1(12), 62(12), e3(12)) =

k
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= (1,'|' 1,11, 1) - {+ i) +} = (.I. 1,711,711, 1) {'I' [} +}
3(5) (&)(5), 81(5), e2(5), 63(5)) = a(13) (60(13), el(13), e2(13), e3(13)) =

=1, 111 {++++} =01, 11,1 {i +++}
3(6) (33(6)' el(s)’ 62(6), 83(6)) = 3(14) (&(14)’ e1(14)’ e2(14), e3(14)) =

=(1,i11, 1,i1) {+71 +1} =(1,71, 1,i1) {171 +7}
3(7) (33(7)' e1(7)’ e2(7)’ e3(7)) = 3(15) (&(15)’ e1(15)’ e2(15), e3(15)) =

=@, 1, 1j1) (+++17} =(1,1,1i1) (i ++7}
3(8) (&)(8), 81(8), ez(g), 63(8)) = a(ls) (eo(ls), 61(16), ez(ls), e3(16)) =

=(1,i1, 1, 1) - {+71 ++} =(@1,71, 1, 1) {17 ++}

3.2 The stignature matrix
The gignatures given in dble 3.1, are combined intol&-component antisym-

metric matrix:

w
o

;%++++}Z(l’ {+++-}11 {- ++-}21 {++- +}318
stig e,(a))zg;: : _&02 §+:++§12 L jrjr}}:zz E;j—;jszg- (3.2)
g__Jr_}os R A R R O

Any other 4basis out othe sixteen 4bases shown in Fig. 2.7 could be cho-
sen as a "base". In this case, the combinations of signs itighatsres ofthe
affine spaces would change, but the physical essence of the investigated non
curved volumeof the /mn-vacuum does not changdevertheless, it should be
remembered that the "Algebra efgnatures” developed here initially hése
16-fold degeneracy. This degeneracy under certain circumstances (in particular,
with some types of curvature tie / mn-vacuum) can lead to theplitting of the
investigated volume ofacuuni into the 16 different quantum states.

The matrix (3.2) will be called the matrix oftignatures This matrix isa
separate mathematical object that has a number of propésitslist some of

them:
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1]. The sum of all 16 signatures (3.2) is equal to zegoature

(i 4} 4 hiT 0} + hHii) +{ri0+)+
+{++++} + T +7} +{+++7} +{+7T ++} +
LT A R TR LT HTT) (T A+

(3.3)

e {i 44} £ {11 +0] 4 {0 ++1) +{0 1 ++) = {0000},

This Expression can also lvepresented as

wher e

t he

{+ + ++}
(i i+
(00 4
(i o+ i)
(+ +7 i}
G+ i)
i+ i)
C+ i T
{0000

umn according to the rules

¢ +e

+

C + & +=® T@r¢ e ¢+

or in transposed form

nature

Hita (+-)

+ + + + + + + +

(i i)
{+ + +17}
(i + +i}
{+ +71 +}
(i + 4
{+71 + +
(i +i 4
{0+ + +)
{0000

32¢+eiet 320
3]. Four binary combinations signsare possible:

a+9 &
Hi2 &g V@

A

vie (4

|-G

Ha

ks
-QDOr

H*a (++)

[es]e)]

|a%
¢

it (.

4]. The ombinations of these binary signs foare thel6 variants oftig-

)

(3.3)

summat i ohné @drformed m eash rgwnaad cgl-+ €

¢ +éie =+%e0¢c=ie 2 €3.3)
2]. The sum of all 64 signs included in the matrix (3.2) is equal to zero

(3.%)

(3.4)

(3.5)

and
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II:% :gl{----}; HI:%_+ :gl{++--}; Vl:%- gl{ +--) legé _gl{+ }

3 +5 &+ +§ 3 +0 at+ +
G IUIEEELE SUICEE TS TSRS INLE IS

a-

v =5 ;gl{---ﬂ; Hv:zé ;§1{++-+}; vv:ég ;gl{-+-+}; HV =g ;gl{---ﬂ;

TR HHi=§£ E RS
(36)

I CIDOz

& . ] I . &
|H.=§ 8 {- - +-} HH|—é£r 8 (+++-} VH|—€:£
5]. The Kronecker square of the twow matrix ofthe binary signs (3.5)
forms a matrix consisting ehe 16 gignatures present in the matrix (3.2):
fr++4) {+++-} {+-+4} {+-+-}o
o+ {+-1g" % C e I ORI R
R % TS N S S
B e (o (8
whereA is the symbol for Kronecker multiplication.
6]. The gignature matrix (3.2) can brepresented as the sum of the dizaj

and antisymmetric matrices

+++4 0 0 0§ & 0 {+++-} {++-} {++- 40
% 0 {-+++}{ 0 } 0 8+§---+%{ 0 }{ ++}§+-+ig
& 0 oo o © oo+ {4 0 +- ++}0
£ o 0 0 f---)8 %—-H (-} fa-} 0 O

(3.8)

3.2.1 TheAnalogy with Chinese philosophy{Ching analogy)

"I-Ching analogy" is the similarity of the initial elements of the mathematical ap-
paratus of the Algebra dafignatures (AS) with the

foundations of the =Ching" (Chinese "Book of H, I
Changes"). 4 3>
L est st the coinciding features of th \\\./7
_Chi . > %
[-Ching and the Algebra afgnatures: V\ L H’
4 N
L =
e e e
M gL h 35

Jort
<
jost
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- There are two beginnings in the Book of Changes:
cite Y aandggi iéYin,
and in the Algebra ddtignatures there are two signs: C I & and C

+ e

- In the Chinese Book of Changhsre are 8 trigramssee kg. ICA1), and
in the Algebra of stignatures there are eigHb&ses gee kg. 6.2a) and / or eight
3-antibasesgee kg. 6.2b);

s
ﬁ/}/ = %\52
G| {HEZN

7,
= = /g
15
2

Fig. ICA 1The éght trigrams andhesixty-four hexagrams of the Chinese Book of Changes
(URL http://honggia-ushu.ru/vuchi/)

- In the Book of Changes, all possible combinations of two trigrams gener-
atethe 64 hexagramssgeFig. 8.2 b), andhe 64 combinations (addition or mul-
tiplication) of the each3-basis with each 3 anbasis are possible in the Algebra
of stignatures

- The Book of Changes is based on various combinations of two mutually
opposite Principlegi € (Yang) and;i 1é (Yin):

Hj \ H I
young Yin young Yang old Yin old Yang

Bb”" 6°» B B BB

Similarly, in theAlgebra ofstignatures four binary combinations of signs
¢+ eandci e are possible (8.5):

{+ +} {'I' 'I'} {+ 'I'} {'I' +}’
from whichare formedthe gignaturesof affine spaces and signatures of
metric spaces.


http://hong-gia-ushu.ru/vu-chi/
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- The dalectics, trialectics and other combinatoriogtheAlgebra of signa-
tures and "IChing" {he Book of Changes) largelgoincide and the basic con-

cept of Chinese philosophyTao (Way) largely coesponds to the concept of
"Vacuum".

3.3 The two-row stignatures andthe Hadamard matrices

If we return the original units to the twow gignatures (3.6), then we obtain the
two-row matrices

00 & 8 B 8 & 3.9)

1-15 & -1 &1 -1 &l -1g
®i18 & .8 B .8 E; 40 310
&1 1 & 1g &1 1§ 41 1g
;.0 5.8 B 8 B, 0
Of these, eight matrices:
&1l 19 al 1g a -1 a 1g
B8 E8 5.0 F .
(3.11)
al -1 &1 -1 &1 1¢ &1 -19
SURUEN NI U PO
aretheHadamard matrices, since they satisfy the condition
~ al 0g
2)A1 °(2=2 : 3.12
1 (A (2 é% 8 312

When raising to Kronecker powers of any of the matrices (3.11), the Hada-
mard matrice$i (n) are again obtained, satisfying the condition:
1 (WA ®(n)=nl, (3.13)

wherel is a diagonal unit matrix of dimensionl :n
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41 0 .. 0§

2 1 .. 08

_ Ve
I_ae 06. (3.14)

R 0

& 0 0 19
For example (3.15)
asl 1¢ & 1o & 1 1 19

g 14% 8 1e.m 15 %% 8 & 80=

H(Z)Az_a]- 10 _a]- 1OAal 10_&@ -1+ (; '1+9_é 1 1 '10
§1§ %-1@%1@*&116_&11”93@1 1 -19
cG '1§ C '1§§ (E% -1 -1 1§
4 1 1 1 1 1 1 1§
e (0]
& -1 1 -11 -1 1 -15
4 1 1 1% 1 -1-11 1 -1 -19
1d° 4 15.3 -1 1 183-1-1 11 -1 -1 18
H2A3: = A = .
@ %-1@ §§ 18rs -1-193 1 1 1 -1-1-1-18
%-1-11§a&-11-1-11-11q
A1 -1-1-1-11 13
g& -1 -1 1 -1 1 1 -1°

(3.16)
and so on according to the algorithm
1 @A=1 (291 QAL @A =1 QAL (2, (BL)

Recall that Hadamard matrices are used to constthetnoiseproof pro-
tected errorcorrecting codes. In particular, it is believed that DNA molecules are
built on the basis adheHadamard matrices [10, 11].

If in the matrix (3.15) we again use the signs {+} afid fstead of 1 and
i1, then we obtain the rule for raising to the Kronecker poweah@two-row

stignaturesFor example,

a & +§ &+ +00 &t t+ + 0
- e s BE fR P2 0
& +o &+ +OA ar *Q_sect -+ ¢t -:0_& - * -6 (318)
& .07R R Fes w5 & w0l . 0
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at+ + + + + +0

e 0]

& -t -+t -+ -5

& + + +§ 2— + - -+ o+ - -8

X e (0]

° A3 o ~ =
atr +0 _a+ +0Aw- - -(:?_%- - - + - - +9
éﬁ--@%-@aﬁ+--9$—+ ----8
%— - - +§ & - - - 4+ - +0

& 0

a t - - - -t +5

8‘1 - -+ -+ + -9

The wo-row gignaturescorresponding to matrices (3.11)

=8 £33 24 &£7%
+x = +x +tz -+
¢ ¢ ¢ ¢ (3.19)
EY RS OB b
¢ éﬁ * ¢ 7 ¢t

will be calledthetwo-row Hadamard tignatures.

3.3.1The Genetic analogy

Geneticinformation is built on the basis of Hadamard matrices [10,11]. Deoxyri-
bonucleic acid (DNA) molecules are built from four chemical elements (nucleo-
tides):
Adenine - A or |
Guanine - G or H
Thymine - T or V
Cytosine - & or H;
These four nucleotides correspond to two bits
the information

A 00 {ii}
G 01 {i +}
T 10 {+1}
C 11 {+ +}

and form: doublets, triplets and other more compl \# =)
combinations of an information polymer (DNA mol &
—

A 1w

cule) [10,11]: \g’"‘; ;A.,,],/
7 e fce

A — e AT-

7 Ny

g—/(, < /,:"—/6 C§v':

N—T=A N 7= A_)


http://elementy.ru/trefil/images/eltbook/dna_600.jpg
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4 3A GO AA GO 2300 AGH aGA GG
. 2 g G & _ 8 % o
aA G§ =%(; TX T—O Hi AV: ¢ C GT_O
{2% T§ %éA Gg TéA Ggo CA CGg aTA Tegg
g é% T2 & TE Fc cT? g‘c TT20
333A 0 & AAGH AAGA AGGHD 843G o ¢ GAGH AGGA GGGHH0
C AAT§ E%GC AGT =6 AC GATQ %GC GGT%
ACA ACGH aATA ATG(”)0 GCA GCGo aGTA GTGH®
r o 8 &, 8° % 8%
aA Gg _ CC ACT:= ¢ TC ATTZ2O (; CcC GCT_ TC GTTX 00
é% T§ AC ¢ ¢ CAGH &4CGA CGGHd °T¢¢TAGo aTGA TGG650
%AC CAT§ %:GC CGT§8 AC TAT_ %GC TGT_og
CCA CCGg aCTA CTG(“).. TCA TCGo aTTA TTGo o)
cc cC CCT@ E%TC CTT§9 CcC TCT_ %TC TTT800
This combinatioaof a nucleotides corresponds to combinationshef signs
¢+ eand cie
at+ + + + +0
& 0
& - + - -0
&+ + + +p &8 o+ - + + - -0
X A2 & o A3 £ 0
+ +9 6é_-+-6£+8_86--_ + - - +0
8 = G 8 = b
éﬁ_ T+ & o+ - '8 G - % + o]
ésé,_ - - 4= a - -+ - +0
& o]
& * - - *y

3.4The mlored quaternions
The sxteenstignatureg3.2) correspond tthe 16 types of "colored" quaternions
(3.20)
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Z1=Xo + X1+ jxo+ kxa {+ ++ +} {TTT7} Z0=Tx T iXeT jXx2T kxa
Z2=TX TiX1T jXo+ kX3 {T171+} {+++1} zio=x0+ix1+jX2T kxs
Z3=XoT iX1T jXo+ kxs {+77 +} {T++7} z11=7 Xo+ix1+jx27 kxs
Z=TXo T iXe+ jXoi kKxs {T1+7} {++71 +} zio=x0+ix1T jx2+kxs
Zs = Xo +iX1 T X2 Tkxs {++71 7} {TT++4} z1z3=TX T Xy + jXot+ kX3
Zs=TXo+iX1T jXol kxs {i +i17} {+ 7 +4} 2147/ X1 iX1 HjXo+ kxa
Z7=Xo 1 iX1+ jX21 kxs {+1 +71} {i +7 +} zi5=TX0 +ixai jxot+ kxs

Zs=TXotixp+jxo+kdxs {i +++} [{+T7T71} z16=XT iXeT jX2T kxa

It was shown in [ 14, 15] that the
i ¢ ol othevacuum €hromodynamics.
It is easy to verify by direct calculation that the sum of all 16 types of "col-

ored" quaternions (3.20) is equal to zero
412z=0, (3.22)

that is, the superposition (i.e., the sum) of all types of "colored" quaternions is

balanced with respect thezeroand satisfies the "vacuum balance condition".

3.5 The gectral-stignature analysis
L ed point out a possible application of the Algebrast@natures to expand the
possibilities ofthe Fourierspectral analysis.

We recall the procedure known in quantytmysics for the transition from a
coordinate representation tareomentunrepresentation

Let there be some function tife space and timg(fii,x,y,2). This function is

represented as a product of two amplitudes:
} (M.xy.2) = G(,xy,2) G(fa.xy,2). (322
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Next, two Fourier transforms are performed

Y (Pets Pes Pys P,) = [ (CL XY, Z)expﬁ;p(Ct- X-y- Z2)}dw, (323

¥ * (Do P By ) = 1 (X, Y, 2) XD ;p(- Ct+x+y+2ldW,  (3.24)

-o

wherep = 2pd// is the generalized frequency; is the wavelengthe - coeffi-
cient of proportionality (in quantum mechanigs= < is reduced Planck’'s con-
stant);d o= dctdxdydzis elementary 4limensional volume

The momentum(spectral) representation of the functipiiy,x,y,2) is ob-
tained as a result of the product of two amplitudes (3.23) and (3.24)

G(Pets P Py P,) =¥ (Pets Ps Py P) 9% (Pt Py Py P) - (3.29
By analogy with the procedure (3.24}3.25), we formulate the foundations
of spectralstignaturg(i.e., "color") Fourieranalysis.

We represent the functigrifii,x,y,z) as a product ahe 8 "amplitudes”

}(m,X,y,Z):L'jl(ﬁ!,X,y,Z) Gz(ﬁ!,X,y,Z) G3(m7Xiy!Z) T éCIE(fT],X,y,Z) = 6/k(Ct, XY, Z) .

k1
(3.29
Instead of the imaginary unit in integrals (3.23) and (3.24), we introduce
the eight objectsy (wherer = 12,3,...,8), which satisfy the anticommutative rela-
tions of the Clifford algebra:
emax+t &em=0 form, k, enemn=1, (3.27)
or Gm + 6Gm= 2lkm, (3.28)
wheretkm is the Kronecker symbolif—= Ofor m, k andtkm= 1 form = K).
These requirements are satisfied, for example, by a sbe8f1 8 mat ri ces
of type (3.29)
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Let's perforntheeight "color" Fourier transforms

(3.30

(et X, y, 2) expfz, Zp (ct+x+y+2)}dw,

= fi

yl(pct’ px’ py’ pz)

A(CLX Y. 2 explz, (-t x- y+ 2w,

= i

yZ(pct' px’ pyl pz)

o

i s(ctxy,2) exp{z3zp(ct- X- y+2)}dW,

-o

Y 3(Pets Pes Pys P,)

o

.(ct Xy, 2) exp{z4zp(- ct- x+y- 2)}dw,

- i

y4(pct’ px’ pyl pz)

o

N s(Ctxy,2) exp{stp(cH X-y- 2)}dw,

-o

Y 5(Pets Pys Py» P,)

o]

(-ct+x- y- 2}dw,

P
h

J(Ct X,y D expiz,

= i

yG(pct’ px’ pyi pz)

e}

i

,(ct, %y, 2) exp{z7zp(ct- X+y- 2)}dw,

y7(pct’ px' py’ pz)
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ol

yB(pct7 p)(’ py’ pz) = ﬁS(Ctv Xa y! Z)exp{ZSZp(- Ct+ X+ y+ Z)}dW’

where the objectsy (3.29) perform the function of Clifford imaginary units.

We also findthe eight complex conjugat&olor” Fouriertransforms

ol

Y1* (Pas Po Py P2) = [ 1(CL XY, Z)eXp{Zlﬁp(- ct- x- y- 2}dw, (3.3)

o]

Yo * (B P Byr D) = i (€L % y,z)exp{zzzp(c+x+y- 2)}aw,

-Q

ys*(ch Py py’ pz) = ﬁ3(Ct’ X Ys z)exp{zszp(- Ct+X+y- Z)}dW’

e}

Y o* (B P Py0 B2) = [ aCt % y,z)exp{z4§(ct+x- y +2)}aW,

-0

o

Vs * (Pas Py Py P,) = [ s(CL XY, Z)exp{zs,zp(- ct- x+y+2)}dw,

ol

Y6 * (P Py Py P,) = [ 6(CL X, y,Z)exp{zﬁzp(ct- X+y+2zZ)}dw,

-o

ol

Y% (P Py Py P) = [ -(CL XY, z)exp{z7;p(- ct+x- y+2z)}dw,

Y™ (P P Py P2) = [ o(CL %, Y, 2)€XD{Z, ) (ct- X- Y- 2)}aW.

The integrals of the_'n'color" Fourier transform (3.30) and (3.31) indee
16 linear forms withgnatures (3.2).

The spectralstignature representation of the functipffiy,x,y,2) is obtained

as a result of the product of eight corresponding paithefcolor" amplitudes

(3.30) and their complex conjugate "color" amplitudes1(3.3

. R
A(Pgr P By P,) = OV i (P Pes By B 4 * (Pt P Py ) (3.32
k=1

In this case, there athe 16 types of "colored" spirals with the correspond-

ing dignatures
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Jd H@2pll (M+x+y+2z} (3.33 {+ ++ + (339
J {w2pl/ (1 Mixiy+2} {i 71 +}
J H{®@2p/l (M7 xiy+2)} {+ T 1 4}
d Hw2p/l (iffi x+yi 2)} {i v + 1}
J A®@2p/l (fy+xiyi 2} {+ + 71 1}
Jd He2p// (I fg+xi yi 2)} {i + 71 1}
Jd H{®2pll (i x+yi 2)} {+ i + 1}
J H{@2pll (i g+ x+y+2)} {it + + 4}
§ T 20l (i ixT yT 2} R
Jd A{@2pll (M+x+yi 2)} {+ + +1}
J H{@2pll (i M+x+yi 2)} {i + +1}
d H{@2pll (M+xTy+2)} {+ + 1 4}
d m(®2p//(I T x+y+2)} {7+ 4}
J A{®@2p/l (Mi x+y+2)} {+ T + +}
Jd A{®2pll (i M+xiy+2)} {t + 1 +}
§ 2o/l (M1 X7 yT 2} T
{0 0 0 O}

Definition 3.5.1"Stignature" is an ordered set of signs in front of the corre-
sponding terms of a linear form.

The Expresson (3.34) will becalleda"rank”, since in its numerator, actions
on the signs (+) an@) are performed by columns and/or by rows.

The result of addingignsin one column is written to the denominator under
this column, and the result of addisignsin one line is writen to the side of the
rank {seethe Expression (3.36)}.

The actions on the signs in the numerator and denominator of the rank are
performed according to the arithmetic rules of addition (or subtraction):

{+}+{#}=2{+} { 7}+{+}={0} {+} T {+#}={0} {1} {+}=2{i}
{+} +{i}={0y {ip+{1}=2{1}, |{+i{r}={2+} {71} 7 {1}={0}
(3.35

The type ofthe operation (addition or subtraction) on the signs in the nu-

merator of the rank is shown as an indexoflisn o mi nawor {gé}

The ank (3.34) can be represented as the sum of two ranks
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[+ ++4) R
(7T 4 b {4+ 41)
(+1 7 4 L+ )
{7 +17} + {+ +71 +} (3.36)
(+ +7 1) fofii+
0o+ i) O T
(+i + 1) b+
i+ + 4} b (s
{000 0 {000 0

where thesignsare summed up both thecolumrs and intherows.
The mnkedEx pr es si on ( tBesditfing ofthesa fcfailnlee dz efir 0 0 ,
it is of interest for the lighgeometry ofthe vacuum, since it reflects the initial

structure of "vacuum balance condition".

The Expressions (3.34) and (3.36) show that the "colog, (pectral
stignature) Fourier analysis is balanced with respect to zero, and can be applied in
the physics othe"vacuum®.

In particular, color (or spectratignature) Fourier analysis can be useful for
the development of "zero".€i, a vacuum) technalgies, such athe compression

of thevacuum communication channels.

4 THE ALGEBRA OF SIGNATURES
4.1 The metric spaces with different signatures
Let's pass from affine geometries to metric ones.
We mnsider an affine space with abasise™(e”,e1",e,&57) (seeFig.
2.7 and Fig4.1a) with the sgnature {+ + +i}. Let& define in this space the
4-vector
ds? = 6Mdx™ = edx” + e Vdx ™ + eV + esNdxe®,  (4.2)
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wheredx is thei-th projection of the 4ectords” onto the axisq(”, the direc-
tion of which is determined by the basis ve&®?.

O e

Q {++++} B) {+++ 1}
Fig. 4.1Two 4-bases with differenttignatures

Letés define a second-vector in an affine space with abasise® (e®),
e®, &®, ) (seeFig. 2.7 and Fig. 4.1b), with théignature {+ + + +}
ds® = g@dx® = ef®dx® + 1Odx® + eOdx® + es®dx®). (4.2)
Wefind the scalar product ahe4-vectors (4.1) and (4.2)

ds®2 = ds®¥ds) = g®g(dx dx¥ = (4.3)
= P Vdxodxo + €1®edxadxo + &®eydxedxo + e3Perdxsdxo +
+ eo®edxodx + e1¥eNdxidx + eV Ndx.dx + es®edxadx +
+ a®PeNdxodx + €:CeVdxdx + e®eNdxdx + esPedxsdx +
+ eo¥esNdxodxs + e1®esdxdxs + eXVesdxedxs + esPesdxdxs.
For the case under consideration, the scalar products of the basis vectors
a®g™ are equal:
for i=j e®ed”=1, e®Peil"=1, &®eN=1, e¥esV=71, (4.4)
forii j all e®g=0.
In this caseExpression (4.3pbecomes quadratic form (i.e., a-thterval)
ds®72= dxodxo + dxidxa + dxedxe i dxsdxs = dxo? + dxi? + dx?i dx?>  (4.5)

with signature (+ + +).
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Definition 4.1.1 The "signature" is an ordered set @&igns in front of the
corresponding terms of the quadratic forfsignature" isthe term othe General
Relativity).

To determine the signature of a metric space with metric (4.5), instead of
performing the operation of the scalar producthefvectors (43), we can multi-
ply the signs of thetiginatures of the4ases shown in Fig. 4.1:

{++++}
{+++ i} (4.9
(+++7)

In the numerator of the rank (4.6), the signs in each column are multiplied

according to the rules

{+}3{+={+F {i}3{x}={+} 3 {i}={1k é.7)
the result osuch a multiplication is written in the denominator (under the line) of
the same column. Performing actions according to these rules will be called rank
multiplication.

Definition 4.12 The"rank" is anExpression that determines the arithmetic
operation with signs of thdaignatures of affine (linear) forms or with signstbé
signatures othe metric (quadratic) forms. The sign after the parenthesis in the
denominator of the rank shows what operation igggeed with the signs in the
columns and/or rows of the ranksimerator (...)+ is a rank addition, (...) is a
ranksubtraction, (...)is a rankdivision, (...) is a rankmultiplication.

Similarly to how it was done with the vectats® andds” {see Expressions
(4.3)7 (45)}, in pairs, scalar multiply with each other vectors from all 16 affine
spaces with bases shown in Fig. 2.7. As a result, we get? 16 = 256 metric
4-spaces with 4ntervals of the form

ds®)2 = gOg® dxXOdx®), (4.9
wherea= 1, 2,b=3,2,, 1%,; 3, €& ,16.



30 M. BatanovGaukhman

The signatures of these 3616 = 256 metric $paces can be determined,
similarly to (4.8), by rank multiplications of the signs of signaturethetorre-

sponding affine spaces:

{+ 71 ++} {+ ++ +} {T ++ +} {+ ++ +}
(++ + 1] (i 7] (++ 4] (i + +1)
+7 +i)s (+7 +i) (i ++i) (0 ++i)
i+ (4 4} (i +++) (i +i)
(++ + ] (i ++7) (i + 4] (H i +i)
(+777) (i +i7) (+++1)r (+++ +)
i) (H+i +) {i +7 4} (i ++4)
(h+ 4+ (i +7 ) (i1 +i) (H i +1)
(+7 1 +) (i ++i) (+777) (+++7)
é e é é
(4 +1} {i +7 1) {i ++7} T
(i i+ ) (i +7) (i +7) (i + +1)
(i ++) (i 7 +) (i i +i) G iTi)
(4.9

The pointO (seeFigure 2.5) is the intersection of all 256 metrisphces
with intervals(i.e., metrig) (4.8) and the corresponding signature (4.9).

Thesum of all 256 metric4paces intersecting at poidtis zero

e I
a.ds” =g g &7 dxVdx™ =0, (4.10

this i s easy to ver i fsignsofadl 5 sighturasthere g 25 6
are 512 {+} and 512 }. Thus, Expression (4.10) satisfies the "vacuum balance
condition”.

A set of 256 metric 4$paces (4naps) form a single 256age "atlas" with a

binding at point O, with a total number of mathematical dimensions32561024.
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The Algebra of sgnature approach largely coincides with the local
reference (tetrad) formalism, which was developed by E. Cartan, R. Weizenbek,
T. Levi-Civita, G. Shipov ] and was often used by A. Einstein in the framework
of differential geometry with absolute paréien.

The difference between the Algebwé sgnature and the tetrad method in
GeneralRelativity is as follows. In geometry with absolute parallelism, at each
point of a 4manifold there are two-frames (i.e., two tetrads), which define one
metric with a intervalds®? = g@g®dx©@dxX® and signaturg+ i i i), while in
the Algebraof sgnature at each point of ar8anifold (i.e, / mn-vacuum) there are
sixteen 4bases (or 4rames, or tetrad)sgeFig. 2.7), the scalar products of which
form 256 metrics (4.8) having the corresponding signature from the collection of

signatures (4.9).

4.2 Four kinds ofthe rank multiplication and the rank division rules
Within the framework othe Algebraof sgnature, the multiplication and division
of dgns in the numerators tiie rankscan be performed according to the follow-

ing four types othearithmetic rules:

| - therules foracommutative/ mn-vacuum:

2= {1} {={i} (4.1D
e {iy={1}  {i}s{i}={+}
{+}:{+}={# {i}:{+}={17} (4.12

{+r{iy={i} {i}:{i}={+}

H - therules foranoncommutative/ mp-vacuum:

{+} 2 {(+}={# {i}e {+}={1} (4.13
{+} 2 {i}={+} {1}y {iy={i}
{+}:{+}={+} {1} {+}={i} (4.14

{+:{ir={+ {i}:{i}={1};
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V - therules foranoncommutative/ mp-antivacuum:

{+} 2 {(+}={i} {i}e {+}={1} (4.19
{+} 2 {i}={+} {i}e{i}={+}
{+}:{+}={T1} {1} {+}={1} (4.19

{+:{ir={+ {1} {1} ={+};

H' - therules foracommutative/ mp-antivacuum:

{+} 2 {+}={1i} {1} {+}={+} (4.19
{+} 2 {iy={1} {iye{iy={+
{+}:{+}={1} {i}{+}={+} (4.18

{+}:{7}={1} {1} {1} ={+};
As an example, we write down the rank (4.6) for the four tygfethe

[ mn-vacwms(4.11)i (4.18)

{++ ++} {++++} {++++} {(++++}
{+++ 1} {+++ 71} {+++ 7} {+++ 71} (4.19)
(+++ i) (+++ + )i G 00 +)e (70 i)

The sum of the signs the denminators of these ranks is zero

(4 T)+ @)+ (T T 4)+G i 0)=0, 4.1
or zerosignature
(+++1)+(F+++)+ (@ T T +)+@ 77 7)=(0O000) (4.1%)

In this paper, we will only use the rule of rank multiplicataordrank divi-
sionof thesigns (4.11) for the commutative,,-vacuum.

However, it should be borne in mind that in a more consistent theory, all
four types ofthe /mn-vaauums with the rules of multiplication and division
(4.11)7 (4.18) andfour corresponding zero factals should be present;!0= 1,

Ol =71, Q!'=0L=1i, O =1 i. These/mp-vacwumsare "supports” for each
other and provide stability and complete balancing of the vacuum of type (4.19a)
and/or type (4.19b).

A set ofthe 16 gignatureq3.2):
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{++++4} {+++-} {++-} {++- 4
(o fond) o) foe ]
4o -4} {be--) {--) (oo 44 (4.20)

forms variousan Abelian groups: by the operationstbé rank multiplication and
rank division by the rules (4.111) (4.18). This indicates that the foundations of

the Algebraof sgnaturecontain hidden symmetries.

4.3 The first stage of compactification othe extra dimensions
One of the main tasks of any multidimensional theory is to determine the method
of compactification (i.e., folding) othe additional mathematical dimensions to
the observable three spatthimensionsand one time dimension.

A similar problem is faced bghe Algebraof sgnature However, we note in
advance that the compactification of extra dimensions iltpebraof sgnature
leads to a nontrivial (i.e., to an unexpected) result.

Note that, for examplehe 16 types of scalar products thie 4bases shown
in Fig. 4.2, lead to sixteen quadratic formamétrics) of the form (4.8)
ds®2 = g@g®dXOdX® with the same signaturé ¢ i +). Therefore, thesmet-

rics can be averaged.
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+-4 9

+-+) 10)

S %

(=+=+) 11)
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Fig. 4.2.The $xteen scalar products tie4-bases, leading tine metrics
with the same signature ¢ +)

/N

Thus, it is possible to distinguish only 256/16 = 16 typeshefmetric
4-spaces with intervals (i,enetrics)

ds(+ )2 d)@Z + dX12+ dX22 + d)@2: 0 dél )2 i dX()Z i dX12 i dX22 i dX’J,Z -0
dé’l’ Ti+)2— i d)©2 i dX12'|' dX22+ dk2: 0 d§+ ++1)2 = d)Q)2+ dX12+ dX22 i dX”,Z =0
ds*' 2= dx?i dx?T dxe?+dxe? =0 dsU 2= dx? + dxa?+ dx?i dx?= 0
ds* 2= dx?T dxa?i dx?T dxe?=0 ds' T2 = dx? +d X+ dxe? + dxe? =0
ds' T2 = i dy?i dxe®+ dxe?T dxe?=0  dsttT 2 = dx?+ dxi®T dx? + dxe? =0
ds T2 =7 dy? + dx?T dx?T dx? =0  dstT T2 = dx?T dx®+ dxe?+ dx?= 0
dsT 2= dx?i dxi?+ dx?i dxe?=0  ds" T T2 =7 dx?+ dxi?i dxe? + dxs® =0
d§+ +11)2 = d)Q)2+ Xmz-I- dxzz-l- dX32 =0 dél T+4)2 — i dX02'|' dX12+ dX22+ dX?,ZZ 0

(4.21)

with appropriate signatures
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(++++) (+++-) (-++-) (++-+)
(=) D) (o) (- )
(=) (F+-0) (b--0) (- +9)

(- 42) (F#2) (Hee) (-0

As a result of this averaging of metriespaces with 16 types dtifie signa-

(4.22)

tures, only 16 4 = 64 mathematical dimensions remain at the first stage of com-

pactification.

4.4 The relationship betweera signature anda 4-spacetopology
According to the classification of Felix Klein [2], metric spaces with intervals
(4.21) can be divided into three topological classes:

1st class:is a4-spaces, the signatures of which consist of four identical
signs [2]:

X0? + X12 +X22 +x52 = 0 (+++4) (4.23)
T Xo?T X221 %21 x5°=0 (ii

are zero metric $paces. These "spaces" have only one valid point, located at the
beginning of the light cone. All other points of thesspacesare imaginary. In
fact, the first of theéexpressions (4.23) describes not #pace but a single point
(or the "white" point), and the seconoheis a single anpoint (or the "black"
point).

2nd class:is a4-spaces, the signatures of which consist of two positive and

two negative signs [2]:

Xo? T X121 X2+ %3 =0 (H 1 +) (4.24)
Xo? + X121 X221 xg2=0 (++ 1)
Xo?T X1?+ %% 1 =0 (#H +7)

i Xo? + X2+ %21 x5°=0 (++7)

T Xo? T Xi®+ X2+ %2 =0 (7 ++)

T w24 X1 3Pt X2 = 0 (47 +)

are various options for-dimensional tori.
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3rd class: is a4-spaces, the signatures of which consist of three identical
signs and onepposite [2]:
i Xo? TX%T X%+ x2=0 (i 77 +) (4.25
T X?T X%+ %21 x2=0 (1 +7)
i X2+ X221 %21 2= 0 (+771)
2 21 %21 X2 = O (i 7)
Xo% + Xi% + X% 1 x3? =0 (++ )
XP+XPT X+ xP=0 (+H +)
Xo?T X%+ X? +x? =0 (+i ++)
T X2+ X2+ X2+ X2 =0 (+++)

are oval 4surfaces: ellipsoids, ellipticglaraboloids, twesheet hyperboloids.
A simplified illustration of the relationship between the signature of a

2-dimensional space and its topology is shown in Fig. 4.3. It can be seen from this

Figure that the signature of the quadratic formangguely related to the topology
of 2-dimensional space.

X3 X
sz U
X2
X1
a) signature (+ +) b) signaturei( +); c) signature (+ 0)
X3 = X1+ X2 X3= X221 X1 X3 = X1
theparabolic surface thesaddle surface theU-shaped surface

Fig. 4.3.An illustration of the relationship between the signature
of a 2dimensional space and its topology [12]

The sxteen types of signatures (4.22), correspondinghtn16 types of
topologies metric spaces, form the matrix
;’gl_(‘++++)°° (+++-)0 (- ++4-)20 (++- +)3°g
01 11 21 31 ..
iardg® :a‘f""") (-++4)" (--+H)T (- +-4) 9’ %6
Slgr( ) z_'____'_)oz (++__)12 (+___)22 (+- ++)328 é.2)
e A ) R CEEED .

The properties of the signature matrix @).2artly coincide with the
properties of thetgynature matrix (3.2).
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4.4.1 TheChess analogy

The "Chess Analogy" is the amazing similarity of the Algelbisgnature (AS) to
the world of chess and the philosophy of Hinduism.

Let's list these similarities:
- The chesshoard hag® = 64 cells: of which 32 are black and 32 are whied
Fig. CA1).

: § AESe.

™ i\f;é 08— -

Fig. CA 1The chessboard consists of 32 white and 32 black cells. At the beginning of the game,
there are 16 white pieces and 16 black pieces on the board

Also in the signature matrixd(26) there are 64 characters, of which 32 are
c+e andié32 are ¢

aII HI VI H'l & a§++++) (+++-) (-++-) (++- +)8

aéH HH VH H' Ho g --+) (-++H) (-+H) (+-4)6

By HV W HVO %+- SH) (FH--) (F---) (+-+4)0

%H HH' VH'" H'H'Z &--+-) (+-+-) (-+--) (--- )8

- At the beginning of the game, there are 32 chess pieces on the chessboard:
16 white and 16 blaclkséeFig. CA 1). Also, within the framework of the Algebra
of signatures, at each point of thens-vacuum there are sixteehbases, which
consist of rotating vectors of the electric fiekk¢Fig. 2.8), i.e. 'TheFigures of
light" and sixteen bases associated with the corners of a cubic cell of a
3D-landscapegeeFig. 2.7), i.e. "TheFigures of darkness";

- Thesignatures (topologies) die 16 types of metric space$.21) are sur-

prisingly similar to the characteristics of chess piesEeFig. CA 2):
x two zerotopologiesh23 correspond wEpgels@aEi ki ngo
and Aqueeno,; RiAXi2121
x  six toroidal topologies4.24) correspond to the three
pairsofches§ i gur es: 2 ﬁbisthDD D[ﬁknight

2 Arookso;
x  eight oval topologiesA(25 correspondo the eight A Al 2 A
fipawnso. | = 1A o [T fal 4 ai

(+7 ++) BN ++7+) HCGEEIE (+++7) HUEBEREIR (i1 +7) (i +77)
pawn pawn pawn pawn pawn pawn pawn pawn

(AEEIE (+7+7) HMUEERIDE (++++) INOAEEDE (+77 +) EOSAEIE (++1 1)
folo]’¢ bishop knight queen king knight bishop rook

Fig. CA 2The omparison othesignatures (topologies) of metric spaces wlithchess pieces
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4.5The scond stage of compactification afhe extra dimensions.
The" / mp-vacuum balance condition”

At the second stage of compactificationtbé extra dimensions, we define the
additive superposition of all 16 metridse(, intervals) (4.21)

ds? = dst 712 4 gt ++92 4 (i 1142 4 g+t 142 4 (4.2
f T2 b T2 4 gl T2 4 gt 2 4
b g T2 4 g2 4 el F 2 4
+ d§+ +i +)2 + d§| T ++)2 + d§+'|' ++)2 + dél +14)2 = 0.
Indeed, adding the metrics (4.21), we obtain (4.27)

dss?= (dxodxoT dxadxa i dxedxe i dxedxs) + (XX + dxadx + dxedx. + dxsdxs) +
+ (I dxodxoT dxedxa+ dxedXe T dxsdXs) + (dxodXoT dxadxa T dxedxe + dxsdxs) +
+ (I dxodXo i dxadxq + dxedXe T dxzdxs) + (dxodxo + dxadx T dxedxe T dXsdxs) +
+ (i dxodXo + dxadxa T dxedXe T dxzdxs) + (dxodxoT dxadx + dxedxe T dxsdxs) +
+ (i dxodXo + dxedxs + dxedXe + dxsdxs) + (I dXxodxo T dxadxai dxedxe T dxadxs) +
+ (dxodXo + dxidxs + dxedXe i dxadxs) + (I dxodxo +dxidxy +dxedXe i dxadXs) +
+ (dxodXo + dxdxa T dxedXe + dxadXs) + (I dxodxoT dxadxa+ dxedxe +dxsdxs) +
+ (dxodxo T dxadx + dxedxe + dxsdxs) + (i dxodxo + dxadxa T dxedxe +dxs0xs) = O.

Instead of summing homogeneous termBxpression (4.27), only the signs
in front of these terms can be summed. Theretéxpression (4.21) can be repre-

sented in the ranked form

(4.29)
0= (0000 + (0000 =0
0= G+ +H) + GTT1) =0
0= G 10 +) + (4 +i) =0
0= (10 +) + G+ +1) =0
0= G 1 +7) + (404 =0
0= ¢+ +1 1) + (i +4 =0
0= G +i Ty o+ (i +49 =0
0= i1 +1) + G 4014 =0
0 (++4) + (iiil) =0
0= 00 00 + (000 0 =0
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where the addition (or subtraction) thie signs is performed according to tfod-
lowing rules:
H+H=2(+) [()+H =0 |[(HiI(H=0©) (@@)i(+H)=20) (429
H+@)=@©Q @)+@)=20), | (HT {)=2+) ()i ()=(0).
The sum of] tedmgns both in the columns of the raekExpression(4.28)
and in their rows between the ranks, is equal to zero. Therefore, this Eaxked
pressiorwi | | b ¢hescpalliltetdi fig of the metric zeroo
The additive imposition ofhe 16 metric 4spaces wittthe intervals (4.21)
and with the corresponding signatures (i.e., topologies) (4.22) at each point of the
/ mn-vacuum leads to the formation of a zero Ritai space. This space is very

similar to the édimensional CalabYau manifold (seeFig. 4.4),

Fig. 4.4.0ne of the realizations of a tadimensional projection of thre#imensional visualization
local section of a-@limensional CalabYau manifold

The second stage of compactificatiorttod additional (mathematicatimen-
siors led to their complete reduction. At the same time, the ranExmgyession
(4.28) is a mathematical formulation of the,r-vacuum balanceonditior'.

Definition 4.5.1 "The /mvacuum balance condition" is a statement that
any manifestations irthe / mrvacuum should be mutually opposite: waanti-
wave, convexity concavity, motion antimotion, compressionstretching, etc.,
so that on average they are equal to zdrbe bcal / mrvacuum manifestations

and antimanifestatbns can be shifted and rotated relative to each other, but, on
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average, over the entiren rvacuum region, they completely compensate for each

other's manifestations, restoring thén'rvacuum balance”.

4.6 Operations with metric ranks

RankedExpression (4.28) allows to perform some operations in the vicinity of the
investigated poinO (seeFig. 2.5) without violating the /'mns-vacuum balance
conditior. Such operations include, for example, a symmetric transfer of the first

columns to the otheside of the equality wittheinverted signs:

0= (0 0 0 + (000 =0
= (+ 4 ) o+ (1T =+
bs (LT 4) (e +1) =1
=G4+ ) =
P A S
S P S S
bs (+0 1) o+ G+ =i
P A S
be (vt ) Dy o
0= (0 00) + (000 =0

(4.30)
or the transfer of any of the lines from the numerators of the ranks (4.28) to their
thedenominators, also with the inversionadfigns, for example:

(4.31)
0= (00 00) + (0000 =0
0= (+ + + +) + (7 11) =0
0= 7T +) + ++ +7) =0
0= (+ 7 7 +) + r+ +7) =0
0= (+ +1i i) N (i +4) =0
0= F + 7 1) + +7 ++4) =0
0= (+1i +1) N i +14 =0
0= Q4 4 4 N + i i) =0
0= (+ + 1 +)+ + (II' T + ll')+ =0

Such ranked operations correspond to certain symmetric vacuum manifesta-

tions, which will be considered below and investigated in [14, 15].
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4.7 The double-sided/ mn-vacuum
As it was shown in the previous paragraph/thgvacuum balance is not violated
if atthe ranks (4.28) transfer one lineas$igrs (i.e., the signature) from the nu-
merator to the denominator with the changa signs to opposite ones according
to the rules of arithmetic.

For example, we transfer the signatufest + +) and (+i 7 1) from the
numerators of the ranks (4.28) to thibie denominators

G+ N+ Giid) =0
Giio+) o+ (et +i) =0
Gii+) o+ (o Ty =0
G i +i) + (++i 4 =0
Gorii) o+ (044 =0
G+ i) + (+i +4) =0
o4 N
i—)( 0 i) (—)('r + ). =0.

(4.32)

In this case, in the denominator of theedind rank (4.32), we get the sig-
nature of the Minkowskél-space(+ 1 1 1), and in the denominatmf the right
hand rank (4.31), we get the signature of the Minkovskitispace(i + + +).

The ankedExpression (4.32) is equivalent to the fact that the addition (i.e.,
additive overlay) othe 7 metric spaces with signatures (topologies) indicated in
the numerator of the leftandrank (4.32) form a metric Minkowski-space with
the interval

dstTT2 = 2d? i dx@i dy?i dZ = dxo?i dxa®T dx?i dxe?, ¢.33)
where
LT T2 2 g+ 492 4 gl 1192 4 g1 1 92 4 gl T +12 4 (4.34
4 A€+ 02 4 g+ 102 4 g +2
this 4space will be conventionally called the outer sidahaf/mn-vacuum (or
ac¢s u b ¢ s antabbreviation from theonventional name "substantial continu-

um®).
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In the same way, the additive superpositiothef/ metric spaces with sig-
natures indicated in the numerator of the dAigahdrank (4.32) forms a metric
Minkowski 4-antispace with the interval

ds' R =i dP + A+ dyP+ dZ =1 dxo’ + dx® + dx? + dx?,  (4.35)
where

49 H 92 = gl 11102 4 gt ++ 102 4 gl #4102 4 g +1 92 4 (4.36
+ dél T ++)2 + d§+ T ++)2 + d§' +1 +)2_

This 4space will be conventionally called the inner side of/thevacuum
(or ancantisubcong is an abbreviationrbm the conventional name "asubstan-
tial continuum").

Definition 4.7.1 The concepts cth¢ subconanéandandubcont e a
mental constructions, which are intended only to create the illusion of "visibility"
of two adjacent mutually opposite sides of drg-vacuum. These concepts are
introduced only to facilitate the visualization of itvacuum processebut they
have nothing to do with reality. However, in terms of these mental concepts, real
vacuum effects can be inspired.

In expanded form, the rank4.32) have the following form (4.37)
ds(+ +++)2— dmz + dX12 + dX22 + dxgz dél Ti7)2= T d)@Z T dxlz T dX22 T d)@,z
d§'|' T1+)2= T d)@Z i dX12'I' dX22+ d)gz d§+ +40)2 = dX02+ dX12+ dX22 i d)@z
d§+ TT+)2= d)q)z-l- dX12'I' dX22+ dxgz ds(‘r +41)2 — T d)®2+ dX12+ dX22 T dX’;z
ds' 2= dxo?T dxi®+ dx?i dxe? ds 192 = dxo? + dxi?i dx?+ dxe?
ds’ *T12 =7 dx?+ dxi?T dxe?i dxe? dst T2 = dxo? i dxa®+ dxe? + dxe?
dst! 2= dx?T dx®+ dx?i dxe? ds" T 2= dxo?+ dxa®T dxe? + dxe?
d§+ +11)2 — d)©2+ dxlz-l- dxzz.l. dX’32 d§' T++)2 = i dXO2 i dX12+ dX22+ d)@z
ds™ 2= dx?T dx®T dxe?T dxe? ds® ** 12 = i dxo? +d X2 + dx? + dxe?

The operation described by the radExpression (4.32) makes it possible
to "reveal" the twesided ofthe / mnp-vacuum with the number dfie mathematical
dimensions 4 + 4 = 8 =*2Therefore, we propose to call such a-sigded 8- di-
mensional space &-2mn-vacuum, undepreservation ofhe 23-/ ms-vacuum bal-
ancecondition

dgt 24 gdi ++ 2= (4.38
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with a ranked equivalent

+7717)+@(+++)=(0000) (4.39)
or in transposed form
(+777) (4.40
(T +++)
(00 0 0)

In this terminology, the ramd Expression (4.28) is equivalent to the
2%-/ mn-vacuum balance condition withe sixteen 4dimensional sides (or faces),
since the number of mathematical dimensionsac$uch 16sided spaceis
4 1 16°6= 64 = 2

Philosophical undestanding of the ranked Expression (4.32) can lead to the
roots of the religious traditions, where the number 7 has a sacred meaning, and
the two sides of the’2 mrvacuum correspond to the Unity and Opposition of the
Masculine and FemininBrinciples.

Letés recall that in the general theory of relativity (GR) of A. Einstein there
is only onemetric 4-space with one signature, for examplej (#+1). Whereas in
the lightgeometry of vacuum developed hetlee any / mp-vacuum can have at
leasttwo sides (i.e., mutually oppositeetric 4-spaces): theuter side(i.e., sub-
cond) and thenner side(i.e., antisubcont with the correspondingiutually oppo-
sitesignatures (+ 1 1) and { + + +).

4.8 The binary triads

Note that not only the raekl Expression (4.32) leads to the antipode dythé:
Minkowski 4-space with signatures {+i 1) andthe Minkowski 4-antispace with
signaturegi + + +).

The ankedbinary triads presented beldead to this dyatbo
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G174 + @ ++0) =0
T +T) + (4T 4) =0
(F 40 0) + (0 +4) =0

e (s 0 (4.49
(7 +0) + (+ 41 4 =0
(++T0) + (0 +5) =0 (4.42
(+7 0 4) + (i ++i) =0
FTi0)+( ++ =0
(7 +0) + (+ 41 4 =0
(++171) +@(7++) =0 (4.43)

17 4 +@0++7) =0
(10 0)4( ++ D=0

These ran&d Expressions (which we will call binary triads) also satisfy the
/ mn-vacuum balance condition, and play an important role in vacuum chromody-

namics developed in [14,15].

4.9 The transversestratification of the gvacuume
Like the ranled Expression (4.31), anpair of a metric 4-spacs with mutually
opposite signatures can be represented as a stiras#ven metric $pacs with
other signatures.

For example, the conjugate pair of intervei§ * *12 and ds* ' ' 92 with
mutually opposite signaturet ¢ +1) and (+i T +) can be expressday an addi-

tive superposition athe sevenmetric4-spaces with signatures

¢+ o+ A f @7 T i) =0
17T 4+ + (++ +1) =0 (4.44)
G0+ 1) f o @+i D =0
+ +7 1) FoG T+ =
G+ 0 i) b +4) =
7 +7) fo0 AT =
i+ 4 4 i _
(i + +1)s f @074 =0
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Similarly, out of 256 metrics with signatures (4.9), 128 conjugate pairs of
metrics can be distinguished, each of which can be expressed in terms of a super-
position ofa7 + 7 = 14metric 4spaces. As a result of mathematidahensiors,
it becomel283 143 4 = 3584.
In turn, the conjugate pairs af4-spaces can be similarly decomposed into
the sums o0& 7 + 7 = 14 subspaces, and this can contindefinitely.
Theresultisavacuumligife omet ry bal anced with res|
roo, in which the Avacuumo is first repr
of/mmvacuums nested into each other (see /
the longitudinalstratification "vacuum” (Definition 2.1.5).
Then each mp-vacuum splits into an infinite number of metrisdbspaces
with 16 types of signatures. At the same time, since all longitudinal layers (i
/Immvacuums) split in the same -subspagcest he en:
with 16 types of signatures. Such a global splitting will be callédm@sverse
stratificationo f ¥ he u.g me
Definition 4.9.1The transverse stratification of a "vacuum®” is its represen-
tation as a global additive superposition of an infinite numbeithef metric
4-subspaces with 16 typestbésignatures (topologies).
Definition 4.9.2 The transverse strditation of a/m~vacuum is its repre-
sentation as an additive superposition of an infinite numbéhemetric 4sub

spaces with 16 types thfe signatures (topologies).

4.9.1 The Musical analogy
The AMusi cal h a r mo mynterical proparttonsiafdeatids efd i n t
such discrete concepts as: sound, rhythm, tempo, meter, size, mode, tonality, dia-
tonic, interval, chord, chromatic, melody, texture, sequence, modulation.

All these concepts, one way or another, are present in the Algélsigna-
tures. For example, in music theory, the sound range is divided into 8 octaves
(eights), in each octave 7+1= 8 notes, 6 tones and 12 semitones. The duration of
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the sounding of notes is divided into
etc.
(e ) - = —— o)
--49 + (#++-) (bt =) + -+
--+-) G do pe Mmu ¢pa corv A cu e I
_ o 7 notes of one octave + 1 note e B R
F+--) + (-49
Cro) + ¢ty of the next octave I R
+ o+ TR ' —3—— Kk & G- Feed
-t AR — —— — —
R = 1/2 R T R D
-++9) R . x o+t o)
’ - Note duration (F—=9) ++4)

In the Algebra of signatures, as well as in musical harmony, the signatures
form linked octaves {see the Expression (4.4fighords {see the expressions
(4.41)-(4.43)}, and the signature sets satisfying the vacuum balance condition are
dividedinto2,48, 16, 32, 64 an& &t56. signs ¢c+e

vshe " Al gebra of signatures" does not
claimed). On the contrary, the Algebra of signatures delights and fills the Soul
with the Triumph of Heavenly Wisdom hidden in theaGFourLetter Name of
the CREATOR (TETRAGRAMMATON)

S XS -|

Recall thatTheAlgebra in translation from Aramite: AL is GOD, Gebor is Power
(i.e. Algebra is the Power of the CREATOR)

5 THE SPINOR LIGHT -GEOMETRY
5.1 The spin-tensor representation of metrics with different signatures
Let's go back to considering the interval
dst T2 = dx? i dxa?i dx? i dxs? with signatureg(+i i 7).  (5.1)
For brevity, we omit the differentials in thispression and write the quad-
ratic form (5.1) in the form
P = %04 X®T %21 X . (5.2)
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As is known, the quadratic fornb.Q) is the determinat of the Hermitian
23 2-matrix
axy +X X +iX
cX1 - X,  X5- X et

X0+X3 X1+IX2
X=X X=X

=x2- x2- x2- x2=0, sign(+- - -). (5.3)

aor

The fact that this matrix is Hermitian can be easily verified by direct calcu-
lation

%ﬂ*_xs % +ieg =%+_)<3 arheg (5.4)
Ch- X X Xr gX-IX X X r
In the spinor theory, matrices of the form (5.4) are catlesimixed Hermit-

ian spintensors of the second rank [9].

We represent the2-matrix (5.4) intheexpanded form

A%, +X, X +iX,0 A& 05 &0 -1 & -ig &1 0§

¢4:§9'in Xo-ngzx‘)é% 15_)(%1 og'xzéﬁ OQ'XsEEO 1@ (5.5)

where

S(+___)_él 06 S(+ _)_éo '16 s(+___)_é.0 '|6 S(+___)_é‘1 06
0 6%1@1 ?10?2 §o§3 ?01@

is a set of Pauli matrices.
In the spinor theoryan As-matrices of the fornf5.5) are uniquely associated
with quaternions of the type
|2 | |
Q=X +€ X +&X;, +&X;, (5.6)

under the isomorphism

C a0 -1g5 C a0 -ig. C &1 0§ (5.7)

ST &L o 2T F of 5T H E |

Similarly, each quadratic formvith the corresponding signature:
: (5.8)
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S22 xo? + xi? + X + X3

S(.I. i1 +)2 = i X02 i X12 i X22 + X32
ST T2 ?
S(+'|' T1)2—=

XOZ .I. X12 .I. X22 + )(3
X02 .I. X12 .I. X22 .I. )(32

S(+ T +1)2— on T X12 + X22 T X32

SN2 = %2 4 32 w2 Xa2

S22 | 321 %21 X2 %2
SN2 = 24 w2+ 32T X
STH2=1 X + xa? + % T Xa?
T2 =1 x? + xa? + X + X
FHIN2 = w24 2 %2 + X2
SHTHN2 = %2 X%+ X2 + Xg2

T2 1 b x 2T X2 + X2

s(.l. T+ 92— i X02 i X12 + X22 + X32

can be represented aspintensors ofmsan As-matrix, which are shown irthe

Table 5.1:
Table5.1
é’\X0+iX3 i)(1"')(26 2 2 2 2 ;
. =X HX XX =0, sign(+++ ¥
c 1" % Xo'lxagdet ?
ax, tixg ix+xq§ &l 0o, &0 i¢ XaO 1o, a 09
1 T xg-id CR 18TF 8TRE, TR 8
where
s(++++) é’l 08 s(++++) —_ é-o I 8 5(++++) é-o 16 s(++++) —_ é-l O g
0 1 - 2 3 =
E;% 1+ c O; 9-1 0x é% -1z
Qo+Xs XEXE o o ,
=X tX +X - X =0;  sign(+++-)
G "% XO_XSgdet
2 A%, + X% |X1+X20 a1l 0§ 6 &1 0§
- % X% - x3_ X"% 18 Xi% o8 XZ%l o8 Xg?o 18
where
s(+++ ):él 06 (+++ )_ao |O (+++ ):a-0 10 s(+++ ):é'-l 06
0 é% ﬁ % o8 §1 o8 : égo 18
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é)(0+iX3 iX1+X26 2 2 2 2 H
S§ =K EG- =00 sign- ++-)
(e X - XO+IX3§det ’
ax, +ix, iX +% @ &1 Oo+ &0 i6+xé0 15 &i 0§
3 ?xl-xz x0+|x3§ XOEEO 18 Xléﬁ 08 2?1 08 Xg%o g
where
5(-++-)_é-l 06 s(-++)_é ++ O 10 S(++)_é-i 06
0 ¢ 1§ ' % §1 o8 3 ?0 @
ax tix; X tX% 0 2.2 W22 -
. =X tX - X+ X =0; sign(++- +)
% X +X X- |X3§det :
aX, tix, x+xq§ &l 0§ & a -1 ai 0g
4 Ex X X- |x3§ XO% 18 Xl%l 08 2§1 O8 Xsé% @
where
s(++,+)_él g (#+-+) %0 1% s(++,+)_§£o - 19 5_(++7+)_éi Og
0 - l 2 - 3 - -
E\% l+ 9-1 0+ 9-1 O+ é% -1=
éX0+X3 in-i-XZ(j 2 2 2 2 H
: ==X X - X tX =0, sign(- - - +)
c X +X - X0+X3+det ?
5 Ax*tx tx o &1 05 20 -ig 40 -lg A&l 00
¢ iX, + X, x0+x3§ "% 1@ Xi(% O@ 2?1 o§ % 1§
where
st +)_51 09 st +>_50 1§ st +)_50 19 st +)_éi 00
0 5%1_ ' ?1 0 "2 ?1 o@ $ g%@
A tX X +tX § 2,02 2y 2 -
=-X +X +X +X =0; sign- +++)
Gl X, - X0+X3§det ?
ax, t X ix t+X, 0 a1 06+ a0 |o+Xé0 1o+ 0§
6 e, - % —x0+x3_ Xf?o 18 X1§ o8 2{?1 o8 &é% 18
where
s(-+++):a_1 06 s(+++):é~o s(+++)_ 0 10 s(+++) al 06
0 ?01?1 §082 §1083 é%l@
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é-X()-'-XS X1+X26 —_ 2 2+ 2 2 _Nn- H
=-X - X5 + X5 =0; sign(- - ++)
Bo-x, %t )(38dEt Xo = X +X +X
AtX X tX, 0 &1 05 &0 -1 a0 1§ Xal 0§
% X, x0+x3_ XOEEO 18 Xl?l o8 Zél 08" 3% 18
where
GeoenoE1 08 (., 40 -15 ., 40 1§ .., &l 0%
0 éﬁo 1§ ! - o§ z &1 of °s E;% 1§
éX0+X3 'X1+X26 2 2 2 2 :
=- X tX - X X =0, sign(- +- +)
;?(1*-)(2 ) X0+X3§det ’
o*tX -X%+x0 &l 0g 40 -1g 40 -lp 4l
é£<1+x2 x0+x3§ % 1@ Xlé% 2£1 O8 XS% 18
where
(- +- +) é l og s(-+-+)_éo -1g 5(-+-+)_%0 -lg (-+-+)_é-1 og
1 - 2 - 3 -
¢ 1= Eﬁ 0= g-l 0= é% 1=
éXO-iX3 X1'iX26 2 2 2 2 :
=X - X - X +x =0, sign(+--+
2 +ix, x0+ix3§det X=X -XNtX an( )
ax, - X - X, 0 al 05 4o |6+ a&-i 0§
&, +ix, x0+|x§ ¢ 18 Xl%l o8 2% 08 X%o §
where
s(+- +):él 06 s(+--+):é~0 _10 s(+ -+):é-o |6 (+ +):é~_i 06
0 é% 1@ ! &1 08 2 ?i o@ $ f?o |§
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é-Xo'xs X1+X26 2 2 2 2 :
=X HX % - =0; sign(+ +- -)
?Xi_l_xz X0+x3§det ?
AX- X X+X0 al 06+ ao 15_Xé0 -15. al 0%
10 Xt X0+X§ X"é% 18 Xl?l o8 &, o8 ng% _18
where
(++ ):él 06 S(++ ):éo 16 s(++ ):é.o '16 5(++ ):él 06
0 5%15 ! ?10+ z ?1 0? 7 é%@
A% X X +iX, 9 X0+X3 Xt .
. =7 =X - X - X - % =0; sign(+---)
(%ﬁ'lxz Xom Xa oo XX X- X T RTRTS
A%+ X X +iX, o_ al 0g a0 -l@_XéO -ig &1 09
1| Bk w-x BR8N B XE 8 %E 8
where
s(+___):é1 06 5(+___):éo -1 s 5 %0 -ig S0 ,_&1 0g
0 ngl ?10@ 5083 5?01@
A tiXg X+X%0 _ o, o, o ,
, =X - X X tx =0, sign(+- ++)
Bo-x x-ied,
12 A tix, x+x06 &l 0§ 40 -1§ . 40 15 & 0g
- %, |x3§ g% 1§ Xl%l o8 2§1 o8 XS% i8
where
5(+-++):é1 0§ s(+-++):é (+ ++):a0 19 s(+.++):al Q
0 é%lg ! §1 08 §1 08 ’ %-@
& X tiXs X +X% 0 s o o s )
B T XXt =00 sign- -+ -)
Fx-x xrixd, :
13 & X tiXg X *+X% 0 al 0§ a0 -15 4&o0 & i
E;Exl-x2 x0+|x3§ XOE% 18 Xi?l 0§ &%1 08 XS(?O 8
where
ceon 8 00 ., 40 -1 ., 40 1§ .., _&i 09
o TR 8 TEL o8 TEL 8 THR LB
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é(: Tef = e- 6 =0 sigite -+ )
2 X3det

aXy - X X1+X0 81 0 40 -1 40 18 &1 09
14 % X, x0+x3 XO% 18 Xl%l o8 zé1 o8 X% 1@
where
(+ + - )_al 00 (+ + - )_ 0 (+ +-) ao 10 (+-+- )_al OO
_% 18 _£1 08 _§1 0B °s _% _18
é-')<0+i)(3 X1+X26 2 2 2 2 :
==X tX - X - X% =0,  sign-+--)
Exex xricd, :
& X tiX; X +X% 0 al 06+ ao 16_Xé0 -1 & 09
15 é£x1+x x0+|x3§ Xoé% 18 Xl?l O@ 2?1 0§ X38£0 Ig
where
s(_+__):é1 09 5(_+__):é0 19 s(_+__):éo -15 (e _&i 09
0 E;% 18 5 ?1 oi' 2 %1 g@o @

& X tix; X +ix, 0

. . =-X- - X - x5 =0;  sign- - - -)
XX, X HiXg D, 2

& X, +iX, x1+ix26__ al 09 ao -1@_X§o -ig a&ai 09
16 | Ex-ix %+l T® a8 5EL oFF oV H 8

where

s = % 08 st =g 8 5;--»»)=$
1= 9-1 (0] ¢ 0=

Eachan ¢s-matrix from the Table 5.1 is assigned a "colored" quaternion
with the corresponding stignature (3.20), where the objects represented below are
used asheimaginary units
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C_S_é-l 0§ C_S_éO -1§ C_S_é-i 09 C_S_éO -
%5%1_%5%05%7%@%8£0§
¢ ¢ ¢ ¢
S o 80 19 o J&0g ¢ 40 g
e9 9 é% _]§ elO 10 ?1 O@ ell 11 (; '|§ elZ 12 ?l O@
C &1 0§ C a0 -1p &i 0§ C a0 -i

(5.9)

where; are the PaulCayley spiamatrices, which are generators of the Clifford
algebra satisfying the conditions

]

—) — —— ) ('D;
A I

0O O NP
o8 ©id I
O- (5.10)
tsicE |,

N f ik j

Table 5.1 shows onlg special cases dhe spintensor representations of
guadratic forms. For example, the determinants of all tfivey 22 2 matrices
(Hermitian spintensors): (5.11)

DO

si("")s J(....)_|_$J(....)Si(....):
2

O

o:

AXo+Xg X tiXp0 8Xo- X3 X X0 AXotXg X - X8 AXo- Xz X tiXG AX- Xy - X tXs@

CRm Xy Xo- Xz GXitiXp XotXz: EXtIXy Xo- Xgr gXi- Xy Xo Xz ?‘0“‘3 X +X £

AXgtXy XgtiXo® AXg- Xg Xz- iXp0 AXotXy Xg- X0 AXg- X XgtiXo@ 8Xp- X - Xot X3
(%(3'”(2 Xo= X 2 gXgtiXy Xo+X = CXgtiIXy Xo- X = Xg-1Xy XptX = ¢Xt

x

3 XX =

BXotXy X tiXg8 BXo- X X X0 BXotXp X -iXa0 8Xo- Xy X tiXgD EXi- X3 - X+ X0
Chm X3 Xo- Xo= g tIXg XotXp: X tIXg Xo- Xz G- IXg Xot X é@o”z X +X3 =

AXotXg Xp tiX( 0 AXg- X3 Xo- %G AXgtXg Xo- %G - X3 XptiXg@ 8iXz- X, - Xo+X 0
o Xy Xp-Xg 2 EXotIX XgtXgr R FX Xo- Xgx ?2'”‘1 Xo+Xg 2 E;EXO"'Xl X3+, =

Q)
x
S

AxXg + X x2+|x3g AXg- X Xp-iX3@ AXot X Xo-iXz® aAXg- X Xy +iXg® dXo- X3 - Xp+ %0

SRa-iXg Xo- X 3 (%‘2“)(3 Xo + X 2 G¥ HiXg XO'X1§ (%(z'ixa Xo+% = (%‘0“‘1 Xy + X3 +

Ao tXy Xgtixd 8- Xy Xg- @ Ao tXy Xg- X0 BXo- Xy X3t EXz- X - X +X0

8

CXa- Xy Xo-Xo= GXa*IXp XotXpr GX3tiXp Xo- Xp GXz- Xy XptXp: GXotXp IXgtXp

Xy~ X - X tXgQAiXo- X XgtXsB AiXg- X3 Xt X GAiXo- X3 Xo+tX 0 AiXz- X Xt X §
XotXs DotX TEXotXg MotXI EXtXy MtXRE XgtX X tXgZ & Xg+Xy XX 2
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equal to the same quadratic fos#

In a number of cases, the discrete degeneracy (i.e.,
of the initial ideal statef the / mn-vacuum when deviating from ideality, can lead

to splitting (quantization) into a discrete set of dissimilar states of its transverse

layers.

Sixteen types ofAs-matrices are equivalent to 16 "color" quaternions (3.20).

latent multivaluedness)

For clarity, all types of "coloredAs-matrices are summaed in Tables.2.

- ¢

Table5.2
Quadratic form $s-matrix Stignature
2 2 2 2 3 0 3 g 4 & 09
Xo“H+X15+Xo+X3 xo% 18+X1$ 08 xz(%l 08+x3é% _|§ {+ +++}
Xo2i X121 Xo? + %32 ><oéIl 08 xéo -lg '% ig+xé‘_i 08 {+771+}
1 2 X 3 :
é% 12 "E1 0 0? éﬁo i9
Gy pae a1 0 ig &40 15 &1 05 .
Xo™HXa? %% T Xg 0% 1870& 87 0E, o8 oF 18 {+++i}
i i 2 2 40 -15 &l 09
Xo2+X11 X221 X3 xo% 13+x1§1 08 X2é£1 Og-x3é% 1@ {++171}
T X2 X 252 Y2 g 0g T T
i X0 +X0 %7 X3 -X@o 18+X1£ 08 Xz$1 08 3% .8 {i ++71}
X071 X421 %21 Xa? "oél 0§ Xl%o -18 wE |§ X3° {+171}
1 2
S AR IR
NP2 X2 4 X Xoél ogﬂz‘%o 1§ Xg 8 ai 00 AT
1 2 1 2 3
é% 12 &1 oY 1 09 %
NN 41 05 &0 -15 &0 & 00 .
X0l X1° +Xo° +X3 Xoé% 1@- Xl?l Og 2£1 08+X3% {+71 ++}
e e i o &106 8 -ig 40 -1g e
T X0%T Xa?i X22+Xa -Xo(g;EO 1§-X1§ ngéél 08" s% 18 {77 +}
nennens |l 8 d Bk ek 8| wien
1 2 - B 2 - 3
E;% -2 TE1L 0 108 %%
T A2 2o X2 Y2 21 09 g --
| XoP x>+ X T, 8 Xl% 08 Xz£1 08”3% 18 {I +++}
X0l Xa* X1 X ol R oBveE of oF 8 {+1+7}
1 2 - M 2 - A3
E}% 12 &1 0¥ &1 of é% -19
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XOZ +X12'|' X22+ )%2 _ XO%O:L 28_ Xl%()l -018+ XZ%OJ- $g+ X3% E_)g {| '|' + +}
(; = (;' = g' - (; =

X021 X2+ Xo? +Xa? - Xo% 01§+ Xl“%ol ég- Xzéﬁol -018' Xa%Oi o_g {i +1 +}
¢V -+ ¢ - ¢ * ¢ -ls

T X0P X071 Xo™xa? - Xo%ol (l)g" Xl%_? _018' X2%01 -01g+ Xs% (1)3 (i +i +}
g - Q = (;' - g -

X071 X121 X221 X2 - Xo% 018- Xl‘%ol _Olg- Xz%) _Oi g' Xs?éoi o.g {rriin}
¢V -+ ¢ + ¢ ¢ L

The Algebra of sighature associates a 4®lanced superposition tfe af-
fine spaces witlthe 16 possible signatures:
dss= (I dxoT dxeT dwei dxs) + ( dxo+ dxa+ dxz + dxs) +
+ ( dxo+ dxi+ dxei dxs) + (1 dxoT dxi T dx + dxs) +
+ (T dXo+ dxa+ dxe ¥ dxg) + ( dxoT dxiT dx + dxs) +
+ ( dxotdxii dxe+dxs) + (Il dxoi dxi+ dxei dxs) +
+ (1 dXoT dxi+ dxo+dxs) + ( dxo+dxiT dxe i dxs) +
+( dxoT dxe+dxe+dxs)+ (I dxo+ dxeT dxe i dxs) +
+ (T dxot dxa T dwot dxs) + ( dxol dxa+ dxoT dxs) +
+( dxoT dxai dxei dx) + (I dxo+ dxit dxo+dxs) =0, (5.12)

with one of the variants @nadditive superposition @& 16-andAs-matrices:

al 09 & -ig a0 -1 Ai

& R I | 8**3@%

+XO§1—1 Og_l_xé +xé +Xé’1| Oo+
bt ﬁaoezé L L
é%-; 1g-io 2 =1 oY 3&% 13

+ +



