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Abstract: The aim of the article is to develop geometrized physics of a vacuum 

on the basis of two basic postulates: 1) the constancy of the speed of light (more 

precisely, the speed of propagation of electromagnetic waves) in the vacuum;       

2) the ‘vacuum balance condition’ associated with the statement that only mutual-

ly opposite formations are born from the vacuum, so that, on average, they com-

pletely compensate of the manifestations of each other. The Algebra of signatures 

is proposed as a mathematical basis for geometrized physics of a vacuum. 
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FOREWORD 

In modern natural science, there are two mutually opposite concepts, which are 

called: "idealism" and "materialism". 

1 Materialistic paradigm 

Within the framework of the modern materialistic (mechanistic) paradigm, the ini-

tial element of everything that exists is energy, which at a certain stage of the expansion 

of the Universe was partially structured into elementary particles. 

Further, from the complete set of elementary particles (photons, electrons, protons, 

neutrons and other leptons, baryons and mesons) that make up the Standard Model, 

chemical elements (atoms and molecules) are formed. 
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In turn, the most energetically favorable inorganic and organic chemical com-

pounds are formed from atoms and molecules due to billions-billions of random interac-

tions. 

Within the framework of this mechanistic concept of acts of interaction of chemi-

cal elements for 13.8 billion years of the existence of the Universe, there is such an ex-

tremely huge amount that a very small probability of the accidental formation of a biolog-

ical cell and, therefore, all living things, is an almost inevitable event. 

Pragmatic materialism considers Life as the most beneficial and stable form of ex-

istence of self-organizing matter, which is able to independently multiply, adapt and im-

prove in the process of struggle for existence (i.e. evolution). 

2 Idealistic paradigm 

Within the framework of "idealism" the Cause of all that exists is the Colos-

sal Infinite REASONING (OMNIPOTENT GOD), WHICH Created Everything 

from Nothing (Emptiness). The Act of Creation from Empty-Nonexistence occurs 

through a consistent and gradual Embodiment of the Ideas of Infinite REASON. 

In Judaism, the INTELLIGENT SOURCE of Being is called EIN SOF, Ba-

ruchu (INFINITE, Blessed is HE), in Chinese philosophy it is DAO (THE WAY 

of Everything), in Greek philosophy - Relentless ROCK, in Hinduism BRAHMA 

(CREATOR), in Islam ALLAH (POWERFUL) ... 

One of the scientific aspects of the idealistic paradigm is associated with the 

study of the properties of vacuum - as an attribute of EMPTINESS manifested in 

our world. 

Vacuum, in the context of empty space, is at the heart of the Clifford-

Einstein-Wheeler program aimed at the complete geometrization of physics. 

Within the framework of this program, it is assumed that nothing happens in the 

world around us except curvatures, displacements and rotations of local and global areas 

of empty space (i.e. ideal vacuum). 

The works of B. Riemann, T. Levi-Civita, A. Einstein, J. Wheeler, G. Weil, F. 

Klein, E. Cartan,  R. Weizenbeck,  D. Vitali and many other researchers were aimed at 

the geometrization of physical fields. 

In Russia, academician A.A. Logunov, who developed the Relativistic theory of 

gravity [3], and Academician of the Russian Academy of Natural Sciences G.I. Shipov 

[2], who used the tetrad formalism of the geometry of absolute parallelism for the devel-

opment of vacuum physics and, in particular, the theory of torsion fields, made signifi-

cant contributions to this area of research. 

It should be noted that the complete geometrization of physics inevitably entails a 

complete rejection of the concept of mass and the unit of measurement "kilogram", since 

this heuristic concept, corresponding to the weight of one liter of distilled water at 4 ° C, 

is absolutely impossible to introduce into geometrized physics. 
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At the same time, the rejection of the concept of mass completely destroys the ide-

ological foundations of materialism. The complete geometrization of physics entails the 

rejection of any manifestations of substance. At the same time, we are faced with the 

problem of the illusory nature of the surrounding reality, since the covariance of differen-

tial geometry and tensor analysis allows each time to choose such a local frame of refer-

ence in which any deformations, displacements and rotations of the vacuum are com-

pletely absent. 

It is not possible to eliminate the curvatures of the vacuum globally, but when all 

vacuum manifestations are averaged, the completely geometrized world completely dis-

appears. 

In other words, the entire geometrized World on average is EMPTY, and its local 

manifestations have the properties of holography, or the result of the Will-expressed Im-

agination of a Colossal JUSTICE. 

As the mathematical apparatus of the light-geometry of the vacuum, the Al-

gebra of signatures is used, built in accordance with the algorithms for Revealing 

the Great and Terrible Name of the ALLHIGHEST י-ה-ו-ה (TETRAGRAMMA-

TON), which are presented in [12]. 

Тhe "Algebra of signatures" does not kill Harmony (as the Pushkin’s Salieri 

claimed). On the contrary, the Algebra of signatures delights and fills the Soul 

with the Triumph of Heavenly Wisdom hidden in the Great Four-Letter Name of 

the CREATOR (TETRAGRAMMATON) 

 י-ה-ו-ה
Algebra in translation from Aramite: AL is GOD, Gebor is Power 

(i.e. Algebra is the Power of the CREATOR) 

 

 

1 INTRODUCTION 

The object of research in this article is vacuum. In the modern physics there are:   

a technical vacuum (the rarefied gas); a physical vacuum (the lowest energy state 

of a set of scalar, vector, tensor and spinor quantum fields); Einstein's vacuum (in 

the general case, a curved 4-dimensional space-time continuum surrounding neu-

tral or charged physical bodies); a perfect vacuum (3-dimensional space in which 

there are no curvatures and particles at all). 
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At the beginning of this article, the main attention is paid to the perfect vac-

uum, with the aim of creating a mathematical apparatus of the "Algebra of signa-

ture", suitable for study of the vacuum phenomena and the development of the 

"zero" technologies. Then the possibilities of describing the curved region of the 

vacuum are considered. 

This work is based on three experimentally confirmed facts: 

1) electromagnetic waves propagate in a perfect vacuum with the speed of 

light c = 299 792 458 m/s; 

2) all averaged characteristics in the mean of a flat area of the perfect vacu-

um (momentum, angular momentum, spin, etc.) are equal to zero. 

3) If something is born from a perfect vacuum, it must be in a mutually op-

posite form (a particle and an antiparticle, a convexity and a concavity, a wave 

and an anti-wave, etc.). This property of the perfect vacuum in this article is called 

the "vacuum balance condition". 

The foundations of the Algebra of signatures, developed in this work, are 

proposed as a universal mathematical apparatus suitable not only for studying the 

properties of vacuum, but also for any other liquid, solid and gaseous continuous 

media in which wave disturbances propagate at a constant speed. 

The Definition numbers of the new terms introduced in this article are pre-

sented in Table 12.1. 

 

2 THE PERFECT VACUUM 

2.1 Longitudinal stratification of a perfect vacuum into m,n-vacuums 

Consider a 3-dimensional volume of a perfect vacuum ("vacuum"), in which there 

are no particles, curvatures and vacuum flows. 

Definition 2.1.1 The perfect vacuum for brevity we will call "vacuum". 
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Let's probe the volume of a "vacuum" by laser beams that sent from three 

mutually perpendicular directions, so that they form a 3-dimensional cubic lattice 

(see Fig. 2.1a,b). 

 

 

 

   

 

 

 

 

 

   

 

 

                           а)                                                                              b)   

Fig. 2.1 a) The 3-dimensional lattice in a "vacuum", which consists of the mutually perpendicular 

monochromatic light beams with a wavelength of m,n; an edge length of a cubic cell of this lattice 

is εmn ~ 102mn; b) Laser light beams in a vacuum, visualized with a finely dispersed sol 

 

The light beams in a perfect vacuum are not visible, but they can be visual-

ized using a finely dispersed sol with a low density (i.e., using small particles with 

a size of several microns, evenly distributed throughout the entire investigated 

volume of the "vacuum", so that the distance between the particles much larger 

than their size). 

Of course, a "vacuum" filled with a transparent sol is not a perfect vacuum. 

Nevertheless, the rays propagate in the “vacuum” itself (i.e., between the particles 

of a low-density sol), while the influence of the sol on the metric-dynamic proper-

ties of the macroscopic volume of the “vacuum” in this case can be neglected. 

A laser light beam is a narrowly directed propagation of mono-chromatic 

electromagnetic waves with a wavelength of -4,-5, taken from the range of lengths 
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Δ =10–4 10–5 cm. Therefore, a 3-dimensional lattice consisting of the mutually 

intersecting laser beams with an edge length of one cubic cell ε-4,-5 ~ 100⸳-4,-5 (see 

Fig. 2.1) will be called -4,-5-vacuum (or 3D-4,-5-landscape). 

Let’s divide the entire range of lengths of an electromagnetic (light) waves 

into a set of sub-ranges Δ =10m  10n cm, where n = m +1 (m and n are integers). 

Definition 2.1.2 In this article, the eikonal of an electromagnetic wave with 

any wavelength  is called "a ray of light with ". In this case, the eikonal means 

the shortest distance from the point of emission of a light (electromagnetic) signal 

to the point of its reception. The diameter of an eikonal (i.e., a beam of light) de-

pends on the wavelength of electromagnetic radiation , and is determined by the 

distance from the center of the eikonal (beam) to an obstacle that can take away 

at least 1% of the energy of the electromagnetic (light) signal transmitted from the 

emitter to the receiver antenna aperture. 

Similar to how it is shown in Fig. 2.1, we probe the investigated volume of 

the "vacuum" with other monochromatic light beams with wavelengths m,n from 

all subranges Δ = 10m –10n cm. As a result, we get an almost infinite number of 

nested m,n-vacuums (i.e., 3Dm,n-landscapes) (see Fig. 2.2) with edge lengths of 

the one cubic cell  εm,n ~ 100⸳m,n. 
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Fig. 2.2 Discrete set of m,n-vacuums (3Dm,n-landscapes) of the same 3-dimensional area                           

of the "vacuum", where m,n > (m+1)(n+ 1) > (m+2)(n+ 2) > (m+3)(n+ 3) > (m+4)(n+ 4)... 

 

The size of the edge of the cubic cell of the each m,n-vacuum approximately 

equal (see Fig. 2.2)    

                                                   εm,n ~ 100⸳m,n                                                             (2.1.1) 

follows from the condition of applicability of the geometric optics m,n → 0, i.e. 

when the thickness of the light beam is much less than the value of the corre-

sponding cubic cell, and it can be neglected. 

Definition 2.1.3 m,n-vacuum is a 3Dm,n-landscape in vacuum, the geodetic 

lines of which are monochromatic beams of light with a wavelength m,n                 

(see Figures 2.1, 2.2). In this case, the thickness of the light rays can be neglected 

in comparison with the dimensions of one cell of the 3Dm,n-landscape. That is, the 

condition of applicability of geometric optics is satisfied. 

Definition 2.1.4 Longitudinal stratification of the "vacuum" is a representa-

tion of a 3-dimensional volume of the "vacuum" in the form of an infinite discrete 

sequence m,n-vacuums (see Fig. 2.2), nested into each other like nesting dolls. 

The question remains open: – Are there physical limitations on the frequen-

cy ω or wavelength  of the electromagnetic wave, both in the direction of their 

increase and in the direction of their decreasing? If the critical values                        

ωmax = 2πс/ma  and  ωmin = 2πс/min exist, then these will be very important char-

acteristics of the «vacuum». As of today, as far as the author knows, the frequency 

range of the observed electromagnetic waves extends from 2 Hz to 1020 Hz, while 

restrictions on the expansion of this range have not been experimentally found. 

 

2.2 The geodetic lines of the curved region of a m,n-vacuum 

Long-term experimental data show that monochromatic light rays in the entire 

observed wavelength range Δ propagate in a "vacuum" with the same speed of 

light c and according to the same laws of electrodynamics. Therefore, if the stud-
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ied area of the vacuum is not curved, then all m,n-vacuums (i.e., 3Dm,n-

landscapes) will be represented as ideal cubic lattices (Fig. 2.1, 2.2), since the 

geodesic lines of all these non-curved m,n-vacuums are direct rays of light. In this 

case, m,n-vacuums will differ from each other only in the length of the edge of the 

cubic cell εm,n ~ 102⸳m,n (see Fig. 2.2). 

However, if the investigated area of the vacuum turns out to be curved, then 

all m,n-vacuums will slightly differ from each other due to the fact that light rays 

with different wavelengths have different thicknesses. This circumstance is theo-

retically substantiated in the sections of geometrical optics related to the resolving 

power of optical devices [17,18], and is confirmed by experimental data (see Fig. 

2.3). 

 

 

 

 

   

   

 

                                

                        = 650 nm                   = 390 nm          = 240 nm     = 170 nm 

 

Fig. 2.3 Experimental data on the thickness of the laser beam as a function of the wavelength  of 

the corresponding monochromatic radiation (see URL https://tech.onliner.by/2006/03/29/blu_ray_about) 

 

In this case, each a m,n-vacuum (i.e., a 3Dm,n-landscape) will be unique (see 

Fig. 2.4), since the vacuum irregularities by averaged within the thickness of the 

probing light beam. 

https://translate.google.com/translate?hl=en&prev=_t&sl=ru&tl=en&u=https://tech.onliner.by/2006/03/29/blu_ray_about
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Fig. 2.4 The curved m,n-vacuum is nested in the curved f,d-vacuum (in case f,d  m,n) 

 

Therefore, one m,n-vacuum is only one 3-dimensional "cut" of the curved 

vacuum area. For a more complete description of the curved area of the vacuum, 

it is necessary to have an infinite set of the curved m,n-vacuums nested into each 

other. 

Thus, the investigated local volume of the vacuum is an infinitely complex 

system. The situation, however, is simplified by the fact that in the entire studied 

range of electromagnetic wavelengths from 10m to 10–19m, all m,n-vacuums obey 

the same physical laws. Therefore, the knowledge obtained in the study of one 

k,r-vacuum automatically extends to all other m,n-vacuums. 

Below, the mathematical apparatus of the Algebra of signatures is devel-

oped, intended for the study of a local volume of only one m,n-vacuum. But this 

apparatus is suitable for investigating not only all m,n-vacuums, but also any oth-

er continuous media in which wave disturbances propagate at a constant speed. 

 

2.3 The sixteen rotating 4-bases 

Let’s return to the consideration of the non-curved volume of one of the               

m,n-vacuums (see Fig. 1.2) and investigate the "vacuum" area in the vicinity of 

the point O (Fig. 2.5). 
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Fig. 2.5 The undistorted 3D-lattice of the m,n-vacuum, revealed from the "vacuum" by means of 

mutually perpendicular monochromatic light beams with wavelength m,n. The cells of such a 

lattice are cubes with an edge length mn of approximately 102·m,n 

 

Let's calculate how many orthogonal 3-bases originate at the central point O 

(see Fig. 2.3). 

If we extract 3-bases from point O in the different directions, then it turns 

out that there are 16 of them (see Fig. 2.6 a,b). 

                       

  а) 8 internal 3-bases                             b) 8 external 3-antibases              c) the adjacent cubic cells 

Fig. 2.6 The sixteen 3-bases at the central point O of the studied volume of the m,n-vacuum 

 

The eight 3-bases belong to the cubic cell itself (see Fig. 2.6a), and the eight 

opposite 3-antibasises belong to adjacent cubic cells (see Fig. 2.6 b,c). 

According to the "vacuum balance condition", any movement in a vacuum 

must be accompanied by a similar anti-movement. Therefore, if one 3-basis (to-

gether with a cubic cell) rotates clockwise, then this is possible only if an adjacent 
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cubic cell (together with a 3-antibasis) rotates counterclockwise in the same way, 

since there is no fulcrum in vacuum. 

In connection with the above, it is convenient for the eight 3-bases (see    

Fig. 2.6a) to add a fourth time axis t, and to the eight 3-antibases (see Fig.2.6b) 

add a fourth anti-axis (i.e., the opposite axis) of time – t. 

Definition 2.3.1 The time axis t is determined by the angular frequency of 

rotation of the 3-basis (i.e., the number of revolutions per unit of time). The rota-

tion of a 3-basis with a constant angular velocity is described by the Expression                   

d/dt =  (where  and   are the phase and angular frequency of rotation of the 

3-basis). Integrating this Expression, we get the time axis t =/. The rotation of 

the 3-antibasis in the opposite direction similarly forms the anti-time axis                  

– t = /. 

Thus, at the considered point О of the m,n-vacuum (see Fig. 2.5) there are         

8 + 8 = 16 orthogonal 4-bases shown in Fig. 2.7. 

                 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Sixteen 4-bases starting at point O obtained by additions to the eight 3-bases of                               

the fourth time axis t and to the eight 3-antibases of  the fourth anti-time axis – t 

 

The sixteen 4-bases (see Fig. 2.7) can be obtained within the framework of 

the theory of propagation of the electromagnetic waves. 
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Let six monochromatic rays of a light with circular polarization come to 

point O: two opposing rays of a light from each of three mutually perpendicular 

directions (see Fig. 2.8). 

 

 

 

 

 

 

 

 

                                       а)                                                                        b) 

Fig. 2.8 a) The rays and anti-rays (i.e., the counter rays) of a light with circular polarization, arriv-

ing at point O from three mutually perpendicular directions; b) Two 3-bases consisting of the elec-

tric field vectors Ex
(+), Ey

(+), Ez
(+) and Ex

(−), Ey
(−), Ez

(−) rotating at the point O in mutually opposite 

directions 

From the six rotating electric field vectors Ex
(+),Eу

(+),Ez
(+) and Ex

(–),Eу
(–),Ez

(–),  

shown in Fig. 2.6, can be formed the 16 rotating 3-bases. Of these: eight 3-bases 

rotate clockwise, and eight other 3-bases rotate counterclockwise. 

 

3 THE ALGEBRA OF STIGNATUR 

3.1 The stignature of an affine 4-dimensional space 

Each of the sixteen 4-bases shown in Fig. 2.7 sets the direction of the axes of the 

4-dimensional affine space. 

In order to introduce the characteristic "stignature" of these spaces, we first 

define the concept of "base". 

Let’s choose from the sixteen 4-bases, shown in Fig. 2.7, 4-basis 

ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5))  and call it “base”. 

We will conventionally assume that the directions of all unit vectors of the 

"base" are positive (see Fig. 3.1) 

                      ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5))  =  (+1, +1,+ 1, +1) → {+ + + +}.       (3.1) 
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Here we have introduced an abbreviated notation {+ + + +}, which we will 

call the “stignature” of the affine space defined by the 4-basis e(5) (i.e., the 

“base”). 

 

 

Fig. 3.1 The affine space, the directions of the axes of which are given by the 4-basis  

ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5)) with the stignature {+ + + +} 

 

Definition 3.1.1 The "stignature" of a 4-basis is a set of signs correspond-

ing to the directions of the unit vectors in relation to the directions of the corre-

sponding unit vectors of the “base”. 

With respect to the directions of the unit vectors of the "base" (i.e., the           

4-basis e(5)), the unit vectors of all the other 4-bases shown in Fig. 2.7, have the 

following signs and the corresponding stignatures: 

                                                                                                         Тable 3.1      

                                                                                                                 

              4-basis                       Stignature                4-basis                       Stignature 

 

ei
(1) (e0

(1), e1
(1), e2

(1), e3
(1)) = 

  =  (1,  1,  –1,  1)      →            {+ + – +}      

 

 ei
(2) (e0

(2), e1
(2), e2

(2), e3
(2)) = 

   =  (1,  –1,  –1,  –1)   →           {+ – – –}   

 

 ei
(3) (e0

(3), e1
(3), e2

(3), e3
(3)) = 

     = (1,  1,  –1,  –1)   →             {+ + – –}     

 

 ei
(4) (e0

(4), e1
(4), e2

(4), e3
(4)) = 

 

ei
(9) (e0

(9), e1
(9), e2

(9), e3
(9)) = 

   = (–1,  1, –1,  1)        →          {– + – +}                

   

ei
(10) (e0

(10), e1
(10), e2

(10), e3
(10)) = 

    = (–1,  1,  –1,  –1)    →           {– – – –}  

   

ei
(11) (e0

(11), e1
(11), e2

(11), e3
(11)) = 

    = (–1,  1,  –1,  –1)    →           {– + – –}   

 

ei
(12) (e0

(12), e1
(12), e2

(12), e3
(12)) =  
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3.2 The stignature matrix 

The stignatures given in Table 3.1, are combined into a 16-component antisym-

metric matrix: 

             ( )
       
       
       
        




















−−−−−−+−−+−+−+−−

++−+−−−+−−+++−−+

+−+−++−−+++−+−−−

+−++−++−−+++++++

=

33231303

32221202

31211101

30201000

)(a
iestign .          (3.2) 

 

Any other 4-basis out of the sixteen 4-bases shown in Fig. 2.7 could be cho-

sen as a "base". In this case, the combinations of signs in the stignatures of the 

affine spaces would change, but the physical essence of the investigated non-

curved volume of the m,n-vacuum does not change. Nevertheless, it should be 

remembered that the "Algebra of signatures" developed here initially has the        

16-fold degeneracy. This degeneracy under certain circumstances (in particular, 

with some types of curvature of the m,n-vacuum) can lead to the splitting of the 

investigated volume of "vacuum" into the 16 different quantum states. 

The matrix (3.2) will be called the matrix of stignatures. This matrix is a 

separate mathematical object that has a number of properties. Let's list some of 

them: 

     = (1, –1, –1,  1)    →              {+ – – +}   

 

 ei
(5) (e0

(5), e1
(5), e2

(5), e3
(5)) = 

     = (1,  1,  1,  1)       →              {+ + + +}    

 

 ei
(6) (e0

(6), e1
(6), e2

(6), e3
(6)) = 

     = (1, –1,  1, –1)    →               {+ – + –}   

 

 ei
(7) (e0

(7), e1
(7), e2

(7), e3
(7)) = 

     = (1,  1,  1, –1)     →               {+ + + –}     

 

 ei
(8) (e0

(8), e1
(8), e2

(8), e3
(8)) = 

     = (1, –1,  1,  1)    →                {+ – + +} 

 

 

     = (–1, –1, –1,  1)     →           {– – – +}    

 

ei
(13) (e0

(13), e1
(13), e2

(13), e3
(13)) =  

     = (–1,  1,  1,  1)        →          {– + + +}   

 

ei
(14) (e0

(14), e1
(14), e2

(14), e3
(14)) =  

     = (–1, –1,  1, –1)      →           {– – + –}   

 

ei
(15) (e0

(15), e1
(15), e2

(15), e3
(15)) = 

    = (–1, 1, 1 –1)           →           {– + + –}  

 

ei
(16) (e0

(16), e1
(16), e2

(16), e3
(16)) =  

    = (–1, –1,  1,  1)         →          {– – + +} 
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1]. The sum of all 16 signatures (3.2) is equal to zero stignature 

              {+ + – +}  +  {+ – – –}  +  {+ + – –}  + {+ – – +} +  

          +  {+ + + +}  +  {+ – + –}  + {+ + + –}  + {+ – + +} +             (3.3) 

          +  {– + – +}  +  {– – – – }  + {– + – –}   + {– – – +} + 

          +  {– + + +}  +  {– – + –}  +  {– + + –}  + {– – + +} = {0000}.     

 

This Expression can also be represented as                                            (3.3a) 

 

 

 

 

 

 

 

                              {0  0  0  0}                    {0  0  0  0}     

                       

where the summation of the signs «+» and «–» is performed in each row and col-

umn according to the rules: 

      «+» + «+» = 2«+»,   «+» + «–» = «–» + «+» = 0,    «–» + «–» = 2«–».     (3.3b) 

2]. The sum of all 64 signs included in the matrix (3.2) is equal to zero 

                                                32«+» + 32«–» = 0.                                (3.3c) 

3]. Four binary combinations of signs are possible: 

                            









−

−










+

+










+

−










−

+
 IHVH ,                (3.4) 

or in transposed form                        

              ( ) ( ) ( ) ( )−−+++−−+ ++++ IHVH           (3.5) 

4]. The combinations of these binary signs form are the 16 variants of stig-

nature: 

{+  +  +  +} 

{–  –  –  +}  

{+  –  –  +}  

{–  –  +  –} 

{+  +  –  –} 

{–  +  –  –} 

{+  –  +  –}  

{+  –  –  –} 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

{–  –   –  –} 

{+  +  +  –} 

{–  +  +  –} 

{+  +  –  +} 

{–  –  +  +} 

{+  –  +  +} 

{–  +  –  +} 

{–  +  +  +) 

= 0 

= 0 

= 0 

= 0                          

= 0 

= 0 

= 0 

= 0 . 
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}.{};{};{};{

};{};{};{};{

};{};{};{};{

};{};{};{};{

−++−








−−

++
=−++−









−+

+−
=−+++









−+

++
=−+−−









−−

+−
=

+−−−








+−

−+
=+−+−









++

−−
=+−++









++

−+
=+−−−









+−

−−
=

++−−








+−

++
=++−−









++

+−
=++++









++

++
=++−−









+−

+−
=

−−−+








−−

−+
=−−+−









−+

−−
=−−++









−+

−+
=−−−−









−−

−−
=

HHHVHHHI

VHVVHVIV

HHVHHHIH

IHVIHIII

                                                                                                                         

(3.6)   

 

5]. The Kronecker square of the two-row matrix of the binary signs (3.5) 

forms a matrix consisting of the 16 stignatures present in the matrix (3.2): 

                    
   
   

       
       
       
       




















−−−−+−−−−−+−+−+−

−+−−++−−−++−+++−

−−−++−−+−−+++−++

−+−+++−+−+++++++

=








−−+−

−+++
2

      

(3.7) 

where  is the symbol for Kronecker multiplication. 

6]. The stignature matrix (3.2) can be represented as the sum of the diagonal 

and antisymmetric matrices 

 

 

 

 

     

     

     

      



















−−+−−+−+−+−−

++−+−−+++−−+

+−+−++−−+−−−

+−++−++−−+++

+





















−−−−

−−−+

+++−

++++

0

0

0

0

000

000

000

000

 

.                                                                                                                       (3.8) 

3.2.1 The Analogy with Chinese philosophy (I-Ching analogy) 

"I-Ching analogy" is the similarity of the initial elements of the mathematical ap-

paratus of the Algebra of stignatures (AS) with the 

foundations of the "I-Ching" (Chinese "Book of 

Changes"). 

Let’s list the coinciding features of the                      

I-Ching and the Algebra of signatures: 
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- There are two beginnings in the Book of Changes: 

       «––» Yang   and   «– –» Yin, 

 and in the Algebra of stignatures there are two signs:              « – »   and   « 

+ »; 
- In the Chinese Book of Changes there are 8 trigrams (see Fig. ICA 1), and 

in the Algebra of stignatures there are eight 3-bases (see Fig. 6.2a) and / or eight  

3-antibases (see Fig. 6.2b); 

 

 

 

 

 

 

 

 

                                        a)                                                        b)                                                  

Fig. ICA 1The eight trigrams and the sixty-four hexagrams of the Chinese Book of Changes                          

(URL http://hong-gia-ushu.ru/vu-chi/) 

 

- In the Book of Changes, all possible combinations of two trigrams gener-

ate the 64 hexagrams (see Fig. 8.2 b), and the 64 combinations (addition or mul-

tiplication) of the each 3-basis with each 3 anti-basis are possible in the Algebra 

of stignatures: 

- The Book of Changes is based on various combinations of two mutually 

opposite Principles «––» (Yang) and «– –» (Yin): 

 

                                  H               V                H                   I         

                                 young Yin     young Yang      old Yin          old Yang    

 

Similarly, in the Algebra of stignatures, four binary combinations of signs 

«+» and «–» are possible (8.5): 

                             {+ +}     {– –}      {+ –}       {– +},  

from which are formed the stignatures of affine spaces and signatures of 

metric spaces. 

─ ─ 
── 

── 
─ ─ 

─ ─ 
─ ─ 

── 
── 

http://hong-gia-ushu.ru/vu-chi/
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- The dialectics, trialectics and other combinatorics of the Algebra of signa-

tures and "I-Ching" (the Book of Changes) largely coincide, and the basic con-

cept of Chinese philosophy - Tao (Way) largely corresponds to the concept of 

"Vacuum". 

 

3.3 The two-row stignatures and the Hadamard matrices 

If we return the original units to the two-row stignatures (3.6), then we obtain the 

two-row matrices 

                                  










−






−

















−

−










−−

−









−

−−









−

−









−−

−−

11

11

11

11

11

11
;

11

11

11

11

11

11

11

11

11

11

                    (3.9) 

 

                     

.
11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11










−−








−

−









−








−−

−










−

−







 −−







 −









−

−−

                  (3.10)                                               

 

Of these, eight matrices: 

                            










−

−−









−−

−









−

−−









−−

−










−






 −









−






−

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

                     (3.11) 

are the Hadamard matrices, since they satisfy the condition 

                                             







=

10

01
2)2()2( ТНН .                               (3.12)     

When raising to Kronecker powers of any of the matrices (3.11), the Hada-

mard matrices H (n) are again obtained, satisfying the condition: 

                                                   ,)()( nInНnН Т =                                   (3.13) 

where I is a diagonal unit matrix of dimension n×n: 
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



















=

1000

0.........

0...10

0...01

I .                                      (3.14) 

For example,                                                                                          (3.15) 

   




















−−

−−

−−
=






























−
−









−










−








−
=









−










−
=









−
=





1111

1111

1111

1111

11

11
1

11

11
1

11

11
1

11

11
1

11

11

11

11

11

11
)2(

2

2H ,                                                                                                                               

    

































−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

=





















−−

−−

−−










−
=









−
=





11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

1111

1111

1111

1111

11

11

11

11
)2(

3

3H
                     

                                                                                                                        (3.16)        

and so on according to the algorithm 

                           Н(2)k = Н(2k) = Н(2)  Н(2)k-1 = Н(2)  Н(2k-1),           (3.17) 

Recall that Hadamard matrices are used to construct the noise-proof pro-

tected error-correcting codes. In particular, it is believed that DNA molecules are  

built on the basis of the Hadamard matrices [10, 11]. 

If in the matrix (3.15) we again use the signs {+} and {–} instead of 1 and        

–1, then we obtain the rule for raising to the Kronecker power of the two-row 

stignatures. For example, 

     




















+−−+

−−++

−+−+

++++

=






























−+

++
−









−+

++
+










−+

++
+









−+

++
+

=








−+

++










−+

++
=









−+

++
2

       

(3.18) 
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































−++−+−−+

++−−−−++

+−+−−+−+

−−−−++++

+−−++−−+

−−++−−++

−+−+−+−+

++++++++

=





















+−−+

−−++

−+−+

++++










−+

++
=









−+

++
3

 

The two-row stignatures corresponding to matrices (3.11) 

                          










+−

−−









−−

+−









−+

−−









−−

−+










−+

++









++

−+









+−

++









++

+−

                   (3.19) 

will be called the two-row Hadamard stignatures. 

 

3.3.1The Genetic analogy 

Genetic information is built on the basis of Hadamard matrices [10,11]. Deoxyri-

bonucleic acid (DNA) molecules are built from four chemical elements (nucleo-

tides): 

                                 Adenine      -    A    or      I 

                                 Guanine     -    G    or     H                     

                                 Thymine     -    T    or     V  

                                 Cytosine     -    С    or     H 

           These four nucleotides correspond to two bits of 

the information 

 

 

 

    

 

 

and form: doublets, triplets and other more complex 

combinations of an information polymer (DNA mole-

cule) [10,11]: 

A 00 {– –} 

G 01 {– +} 

T 10 {+ –} 

C 11 {+ +} 

http://elementy.ru/trefil/images/eltbook/dna_600.jpg
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This combinations of a nucleotides corresponds to combinations of the signs 

«+»  and  «–» 

    

;

2





















+−−+

−−++

−+−+

++++

=








−+

++


  

































−++−+−−+

++−−−−++

+−+−−+−+

−−−−++++

+−−++−−+

−−++−−++

−+−+−+−+

++++++++

=








−+

++
3

             

 

3.4 The colored quaternions 

The sixteen stignatures (3.2) correspond to the 16 types of "colored" quaternions 

                                                                                                                        (3.20)     
























































=























































=








TTTC

TGTA

CTCC

CGCA

GTGC

GGGA

AVHA

AGАА

TC

GA
T

TC
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It was shown in [14, 15] that the “colors” of quaternions correspond to the 

“colors” of the vacuum chromodynamics. 

It is easy to verify by direct calculation that the sum of all 16 types of "col-

ored" quaternions (3.20) is equal to zero 

                                                  ,0
16

1

=
=k

kz                                          (3.21) 

that is, the superposition (i.e., the sum) of all types of "colored" quaternions is 

balanced with respect to the zero and satisfies the "vacuum balance condition". 

 

3.5 The spectral-stignature analysis 

Let’s point out a possible application of the Algebra of stignatures to expand the 

possibilities of the Fourier spectral analysis. 

We recall the procedure known in quantum physics for the transition from a 

coordinate representation to a momentum representation.  

Let there be some function of the space and time ρ(сt,x,y,z). This function is 

represented as a product of two amplitudes: 

                          ρ(сt,x,y,z) = φ(сt,x,y,z) φ(сt,x,y,z).                             (3.22) 

z1 = x0 + ix1 + jx2 + kx3        {+ + + +} 

 

z2 = –x0 –ix1 – jx2+ kx3        {– – – +} 

  

z3 = x0 – ix1 – jx2+ kx3        {+ – – +} 

 

z4 = –x0 – ix1+ jx2–kx3        {– – + –} 

 

z5 = x0 +ix1 – jx2 –kx3         {+ + – –} 

 

z6 = –x0 + ix1 – jx2–kx3        {– + – –} 

 

z7 = x0 – ix1+ jx2 – kx3         {+ – + –} 

 

z8 = –x0+ix1 + jx2 + kdx3      {– + + +} 

{– – – –}   z9 = –x0 – ix1 – jx2 – kx3  

 

{+ + + –}   z10 = x0 + ix1 + jx2 – kx3             

 

{– + + –}   z11= – x0 + ix1 + jx2 – kx3  

 

{+ + – +}    z12= x0 + ix1 – jx2 + kx3  

 

{– – + +}    z13= –x0 – ix1 + jx2+ kx3  

 

{+ – + +}    z14= x0 – ix1 +jx2+ kx3 

 

{– + – +}    z15 = –x0 + ix1– jx2+ kx3            

 

{+ – – –}    z16 = x0 – ix1 – jx2 – kx3     
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Next, two Fourier transforms are performed 

   


−

−−−= dzyxct
p

izyxctpppp zyxct )}(exp{),,,(),,,(


 ,           (3.23) 

   


−

+++−= dzyxct
p

izyxctpppp zyxct )}(exp{),,,(),,,(*


 ,        (3.24)        

 

where p = 2η/  is the generalized frequency;   is the wavelength; η - coeffi-

cient of proportionality (in quantum mechanics η = ћ is reduced Planck's con-

stant); dΩ = dctdxdydz  is elementary 4-dimensional volume. 

The momentum (spectral) representation of the function ρ(сt,x,y,z) is ob-

tained as a result of the product of two amplitudes (3.23) and (3.24) 

               ),,,(*),,,(),,,( zyxctzyxctzyxct ppppppppppppG  = .            (3.25) 

By analogy with the procedure (3.24) – (3.25), we formulate the foundations 

of spectral-stignature (i.e., "color") Fourier analysis. 

We represent the function ρ(сt,x,y,z) as a product of the 8 "amplitudes" 

   ρ(сt,x,y,z)=φ1(сt,x,y,z) φ2(сt,x,y,z) φ3(сt,x,y,z)×…×φ8(сt,x,y,z) = 
=

8

1

),,,(
k

k zyxct .                                      

                                                                                                                       (3.26) 

Instead of the imaginary unit i, in integrals (3.23) and (3.24), we introduce 

the eight objects ζr (where r = 1,2,3,...,8), which satisfy the anticommutative rela-

tions of the Clifford algebra: 

                      ζm ζk + ζk ζm = 0  for  m  k ,   ζm ζm = 1,                        (3.27) 

                             or    ζm ζk  + ζk ζm = 2δkm ,                                        (3.28) 

where δkm  is the Kronecker symbol (δkm= 0 for m  k  and δkm = 1 for m = k). 

These requirements are satisfied, for example, by a set of the 8×8 matrices 

of type                                                                                                             (3.29) 
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Let's perform the eight "color" Fourier transforms: 

 




−

+++= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 111


 ,              (3.30) 




−

+−−−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 222


 ,                                    




−

+−−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 333


 ,                                   




−

−+−−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 444


 ,                                                                




−

−−+= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 555


 ,                                  




−

−−+−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 666


 ,                                   




−

−+−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 777


 ,                                 
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


−

+++−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,( 888


 ,             

 

where the objects ζm (3.29) perform the function of Clifford imaginary units. 

We also find the eight complex conjugate "color" Fourier transforms:                     




−

−−−−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 111


 ,            (3.31)                                  




−

−++= dzyxc
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 222


 ,                                    




−

−++−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 333


 ,                                    




−

+−+= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 444


 ,                                 




−

++−−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 555


 ,                                  




−

++−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 666


 ,                                 




−

+−+−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 777


 ,                                  




−

−−−= dzyxct
p

zyxctpppp zyxct )}(exp{),,,(),,,(* 888


 .                                 

The integrals of the "color" Fourier transform (3.30) and (3.31) include the 

16 linear forms with stignatures (3.2). 

The spectral-stignature representation of the function ρ(сt,x,y,z) is obtained 

as a result of the product of eight corresponding pairs of the "color" amplitudes 

(3.30) and their complex conjugate "color" amplitudes (3.31) 

      
=

=
8

1

),,,(*),,,(),,,(
k

zyxctkzyxctkzyxct pppppppppppp  .         (3.32)                     

In this case, there are the 16 types of "colored" spirals with the correspond-

ing stignatures 
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  ехр{ζ1 2 / (  сt + x + y + z)}    (3.33) 

  ехр{ζ2 2 / (– сt –x – y  + z)}     

  ехр{ζ3 2 / (  сt – x – y  + z)}      

  ехр{ζ4 2 / (–сt  – x + y – z)}      

  ехр{ζ5 2 / (  сt  + x – y – z)}    

  ехр{ζ6 2 / (– сt + x – y – z)}     

  ехр{ζ7 2 / (  сt – x + y – z)}                                                                   

  ехр{ζ8 2 / (– сt+ x + y +z)}   

  ехр{ζ1 2 / (– сt –x – y – z)}     

  ехр{ζ2 2 / (  сt + x + y – z)}     

  ехр{ζ32 / (– сt + x + y – z)} 

  ехр{ζ4 2 / (  сt + x – y + z)}        

  ехр (ζ5 2 /(– сt – x + y + z)}  

  ехр{ζ6 2 / (  сt – x + y + z)}        

  ехр{ζ7 2 / (– сt + x– y + z)}                                                          

  ехр{ζ8 2 / (  сt – x – y – z)}   

 

{+   +  +   +}        (3.34) 

{–   –   –   +} 

{+   –   –   +} 

{–   –   +   –} 

{+   +   –   –} 

{–   +   –   –}          

{+   –   +   –}   

{–   +   +   +}                        

{–   –    –   –}                                                                 

{+    +   +  –} 

{–    +   +  –} 

{+   +    –  +}  

{–   –   +   +}  

{+   –   +   +}  

{–   +   –   +} 

{+   –   –   –}    

{0   0   0   0}+        

Definition 3.5.1 "Stignature" is an ordered set of signs in front of the corre-

sponding terms of a linear form. 

The Expression (3.34) will be called a "rank", since in its numerator, actions 

on the signs (+) and (–) are performed by columns and/or by rows.  

The result of adding signs in one column is written to the denominator under 

this column, and the result of adding signs in one line is written to the side of the 

rank {see the Expression (3.36)}. 

The actions on the signs in the numerator and denominator of the rank are 

performed according to the arithmetic rules of addition (or subtraction): 

  {+} + {+} = 2{+};   {–} + {+} = {0};        

  {+} + {–} = {0};     {–} + {–} = 2{–},     

{+} – {+} = {0};    {–} – {+} = 2{–};        

{+} – {–} = {2+};  {–} – {–} = {0},     

                                                                                                              (3.35) 

The type of the operation (addition or subtraction) on the signs in the nu-

merator of the rank is shown as an index of its denominator {…}+  or {…}–. 

The rank (3.34) can be represented as the sum of two ranks 
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where the signs are summed up both in the columns and in the rows. 

The ranked Expression (3.36) is called “the splitting of the affine zero”, and 

it is of interest for the light-geometry of the vacuum, since it reflects the initial 

structure of "vacuum balance condition". 

 

The Expressions (3.34) and (3.36) show that the "color" (i.e., spectral-

stignature) Fourier analysis is balanced with respect to zero, and can be applied in 

the physics of the "vacuum". 

In particular, color (or spectral-stignature) Fourier analysis can be useful for 

the development of "zero" (i.e., a vacuum) technologies, such as the compression 

of the vacuum communication channels. 

 

4 THE ALGEBRA OF SIGNATURES 

4.1 The metric spaces with different signatures 

Let's pass from affine geometries to metric ones. 

We consider an affine space with a 4-basis ei
(7)(e0

(7),e1
(7),e2

(7),e3
(7)) (see Fig. 

2.7 and Fig. 4.1a) with the stignature {+ + + –}. Let’s define in this space the            

4-vector 

   ds(7) = ei
(7)dxi

(7)  = e0
(7)dx0

(7) + e1
(7)dx1

(7) + e2
(7)dx2

(7) + e3
(7)dx3

(7),         (4.1) 

{+  +  + +} 

{–  –  –  +}  

{+  –  –  +}  

{–  –  +  –} 

{+  +  –  –} 

{–  +  –  –} 

{+  –  +  –}  

{–  +  +  +} 

{0  0  0  0)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

 

{–  –   –  –} 

{+  +  +  –} 

{–  +  +  –} 

{+  +  –  +} 

{–  –  +  +} 

{+  –  +  +} 

{–  +  –  +} 

{+  –  –  –} 

{0  0  0  0)+ 

= 0 

= 0 

= 0 

= 0                     (3.36) 

= 0 

= 0 

= 0 

= 0 

= 0 . 
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where dxi
(7)  is the i-th projection of the 4-vector ds(7) onto the axis xi

(7), the direc-

tion of which is determined by the basis vector ei
(7). 

 

а)  {+ + + +}                б) {+ + + –} 

Fig. 4.1 Two 4-bases with different stignatures 

 

Let’s define a second 4-vector in an affine space with a 4-basis ei
(5) (e0

(5), 

e1
(5), e2

(5), e3
(5)) (see Fig. 2.7 and Fig. 4.1b), with the stignature {+ + + +} 

             ds(5) = ei
(5)dxi

(5) = e0
(5)dx0

(5) + e1
(5)dx1

(5) + e2
(5)dx2

(5) + e3
(5)dx3

(5).           (4.2) 

We find the scalar product of the 4-vectors (4.1) and (4.2) 

 

  ds(5,7) 2  = ds(5)ds(7) = ei
(5)ej

(7)dxi dxj =                                                                         (4.3) 

 = e0
(5)e0

(7)dx0dx0
 +  e1

(5)e0
(7)dx1dx0

 + e2
(5)e0

(7)dx2dx0
 + e3

(5)e0
(7)dx3dx0

 +                                                                                                                                      

 + e0
(5)e1

(7)dx0dx1
 +  e1

(5)e1
(7)dx1dx1

 + e2
(5)e1

(7)dx2dx1
 + e3

(5)e1
(7)dx3dx1

 +   

 + e0
(5)e2

(7)dx0dx2
 +  e1

(5)e2
(7)dx1dx2

 + e2
(5)e2

(7)dx2dx2
 + e3

(5)e2
(7)dx3dx2

 +     

 + e0
(5)e3

(7)dx0dx3
 +  e1

(5)e3
(7)dx1dx3

 + e2
(5)e3

(7)dx2dx3
 + e3

(5)e3
(7)dx3dx3.

   

For the case under consideration, the scalar products of the basis vectors 

ei
(5)ej

(7)  are equal: 

             for  i = j    e0
(5)e 0

(7) = 1,  e1
(5)e1

(7) = 1,  e2
(5)e2

(7) = 1,  e3
(5)e3

(7) = –1,    (4.4) 

             for i ≠ j  all  ei
(5)ej

(7) = 0.   

In this case, Expression (4.3) becomes a quadratic form (i.e., a 4-interval) 

       ds(5,7)2 = dx0dx0
 + dx1dx1

 + dx2dx2
 – dx3dx3

 = dx0
2 + dx1

2 + dx2
2 – dx3

2         (4.5) 

with signature (+ + + –). 
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Definition 4.1.1 The "signature" is an ordered set of signs in front of the 

corresponding terms of the quadratic form ("signature" is the term of the General 

Relativity). 

To determine the signature of a metric space with metric (4.5), instead of 

performing the operation of the scalar product of the vectors (4.3), we can multi-

ply the signs of the stignatures of the 4-bases shown in Fig. 4.1: 

                                           {+ + + +}          

                                           {+ + +  –}                                                (4.6) 

                                            (+ + + –)  

In the numerator of the rank (4.6), the signs in each column are multiplied 

according to the rules 

           {+}  {+} = {+};       {–}  {+} = {+}  {–} = {–};               (4.7) 

the result of such a multiplication is written in the denominator (under the line) of 

the same column. Performing actions according to these rules will be called rank 

multiplication. 

Definition 4.1.2 The "rank" is an Expression that determines the arithmetic 

operation with signs of the stignatures of affine (linear) forms or with signs of the 

signatures of the metric (quadratic) forms. The sign after the parenthesis in the 

denominator of the rank shows what operation is performed with the signs in the 

columns and/or rows of the ranks numerator: (...)+ is a rank addition, (...)– is a 

rank subtraction, (...): is a rank division, (...)× is a rank multiplication. 

Similarly to how it was done with the vectors ds(5) and ds(7) {see Expressions 

(4.3) – (4.5)}, in pairs, scalar multiply with each other vectors from all 16 affine 

spaces with 4-bases shown in Fig. 2.7. As a result, we get 16  16 = 256 metric           

4-spaces with 4-intervals of the form   

                                 ds(аb)2 = ei
(а)ej

(b) dxi(а)dxj(b),                                                 (4.8)                                        

where  a = 1, 2, 3,…,16;   b = 1, 2, 3, … ,16.             
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The signatures of these 16  16 = 256 metric 4-spaces can be determined, 

similarly to (4.8), by rank multiplications of the signs of signatures of the corre-

sponding affine spaces: 

                                                                                                               (4.9)  

The point O (see Figure 2.5) is the intersection of all 256 metric 4-spaces 

with intervals (i.e., metric) (4.8) and the corresponding signature (4.9).  

 

 

The sum of all 256 metric 4-spaces intersecting at point O is zero 

                     

,0
16

1

16

1

)()()()(
256

1

)( 
= ==

==
a b

biaib

j

a

i

k

k dxdxeeds

                  

(4.10) 

this is easy to verify, since among 256 × 4 = 1024 signs of all 256 signatures there 

are 512 {+} and 512 {–}. Thus, Expression (4.10) satisfies the "vacuum balance 

condition". 

A set of 256 metric 4-spaces (4-maps) form a single 256-page "atlas" with a 

binding at point O, with a total number of mathematical dimensions 2564= 1024. 

{+ – + +}                                                          

{+ + + –} 

  (+ – + –) 

{+ + + +}                                                   

{+ – + –} 

  (+ – + –) 

{– + + +}                                                   

{+ + + –} 

  (– + + –) 

{+ + + +}                                                   

{– + + –} 

  (– + + –) 

 

{+ – – +}                                                   

{+ + + –} 

 (+ – – –) 

 

{+ + – +}                                                   

{– + + –} 

 (– + – –) 

 

{– + + +}                                                   

{– + + –} 

(+ + + –) 

 

{+ – + –}                                                   

{+ – + –} 

(+ + + +) 

 

{+ – – –}                                                   

{+ + + –} 

 (+ – – +) 

 

{+ + – +}                                                   

{– + – –} 

 (– + + –) 

 

{– + – +}                                                   

{– – + –} 

 (+ – – –) 

 

{+ – + +}                                                   

{+ – + –} 

 (+ + + –) 

… … … … 

 

{+ + + –}                                                   

{– – + –} 

 (– – + +) 

{– + – –}                                                   

{+ – + –} 

  (– – – +) 

{– + + –}                                                   

{+ – + –} 

 (–  – + –) 

{+ – – +}                                                   

{– + + –} 

  (– – – –) 
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The Algebra of signature approach largely coincides with the local-

reference (tetrad) formalism, which was developed by E. Cartan, R. Weizenbek, 

T. Levi-Civita, G. Shipov [5] and was often used by A. Einstein in the framework 

of differential geometry with absolute parallelism. 

The difference between the Algebra of signature and the tetrad method in 

General Relativity is as follows. In geometry with absolute parallelism, at each 

point of a 4-manifold there are two 4-frames (i.e., two tetrads), which define one 

metric with an interval ds(аb)2 = ei
(а)ej

(b)dxi(а)dxj(b) and signature (+ – – –), while in 

the Algebra of signature at each point of a 3-manifold (i.e., m,n-vacuum) there are 

sixteen 4-bases (or 4-frames, or tetrad) (see Fig. 2.7), the scalar products of which 

form 256 metrics (4.8) having the corresponding signature from the collection of 

signatures (4.9). 

 

4.2 Four kinds of the rank multiplication and the rank division rules 

Within the framework of the Algebra of signature, the multiplication and division 

of signs in the numerators of the ranks can be performed according to the follow-

ing four types of the arithmetic rules: 

 

 

                      I    -   the rules for a commutative m,n-vacuum: 

                        {+}  {+} = {+}        {–}  {+} = {–}                       (4.11) 

                        {+}  {–} = {–}         {–}  {–} = {+}       

  

                        {+} : {+} = {+}         {–} : {+} = {–}                        (4.12) 

                        {+} : {–} = {–}          {–} : {–} = {+};       

        H    -  the rules for a non-commutative m,n-vacuum: 

                        {+}  {+} = {+}         {–}  {+} = {–}                      (4.13)                                                                                                           

                        {+}  {–} = {+}         {–}  {–} = {–}        

 

                        {+} : {+} = {+}          {–} : {+} = {–}                       (4.14)    

                        {+} : {–} = {+}          {–} : {–} = {–};       
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        V   -  the rules for a non-commutative m,n-antivacuum:                             

                      {+}  {+} = {–}          {–}  {+} = {–}                       (4.15)        

                      {+}  {–} = {+}          {–}  {–} = {+}     

 

                      {+} : {+} = {–}            {–} : {+} = {–}                       (4.16) 

                      {+} : {–} = {+}            {–} : {–} = {+};          

                     H'  -  the rules for a commutative m,n-antivacuum:                                                        

                                  {+}  {+} = {–}           {–}  {+} = {+}                      (4.17)                                                                                                           

                      {+}  {–} = {–}           {–}  {–} = {+}        

 

                      {+} : {+} = {–}            {–} : {+} = {+}                       (4.18)           

                      {+} : {–} = {–}            {–} : {–} = {+};        

  

As an example, we write down the rank (4.6) for the four types of the        

m,n-vacuums (4.11) – (4.18) 

 {+ + + +}        {+ + + +}          {+ + + +}         {+ + + +}      

 {+ + +  –}        {+ + + –}          {+ + +  –}         {+ + + – }          (4.19) 

  (+ + + –)I       (+ + + +)H           (–  –  –  +)V         (–  –  –  –)H' 

 

The sum of the signs in the denominators of these ranks is zero 

     (+ + + –) + (+ + + +) +  (–  –  –  +) + (–  –  –  –) = 0,                 (4.19a) 

or zero signature 

   (+ + + –) + (+ + + +) +  (–  –  –  +) + (–  –  –  –) = (0 0 0 0)           (4.19b)      

In this paper, we will only use the rule of rank multiplication and rank divi-

sion of the signs (4.11) for the commutative m,n-vacuum. 

However, it should be borne in mind that in a more consistent theory, all 

four types of the m,n-vacuums with the rules of multiplication and division               

(4.11) – (4.18) and four corresponding zero factorials should be present: 0I! = 1,  

0H! = –1,  0V! = 0V
0 = i,  0H'! = – i. These m,n-vacuums are "supports" for each 

other and provide stability and complete balancing of the vacuum of type (4.19a) 

and/or type (4.19b). 

A set of the 16 stignatures (3.2): 
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                                      (4.20)   

forms various an Abelian groups: by the operations of the rank multiplication and 

rank division by the rules (4.11) – (4.18). This indicates that the foundations of 

the Algebra of signature contain hidden symmetries. 

 

4.3 The first stage of compactification of the extra dimensions 

One of the main tasks of any multidimensional theory is to determine the method 

of compactification (i.e., folding) of the additional mathematical dimensions to 

the observable three spatial dimensions and one time dimension. 

A similar problem is faced by the Algebra of signature. However, we note in 

advance that the compactification of extra dimensions in the Algebra of signature 

leads to a nontrivial (i.e., to an unexpected) result. 

Note that, for example, the 16 types of scalar products of the 4-bases shown 

in Fig. 4.2, lead to sixteen quadratic forms (metrics) of the form (4.8)                           

ds(аb)2 = ei
(а)ej

(b)dxi(а)dxj(b) with the same signature (– + – +). Therefore, these met-

rics can be averaged. 

       

       

       

       −−−−−−+−−+−+−+−−

++−+−−−+−−+++−−+

+−+−++−−+++−+−−−

+−++−++−−+++++++
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Fig. 4.2. The sixteen scalar products of the 4-bases, leading to the metrics  

with the same signature (– + – +) 

 

Thus, it is possible to distinguish only 256/16 = 16 types of the metric          

4-spaces with intervals (i.e., metrics) 

 

ds(+ + + +)2 =      dx0
2 + dx1

2 + dx2
2 + dx3

2= 0  

ds(– – – +)2 = – dx0
2 – dx1

2 – dx2
2 + dx3

2 = 0 

ds(+ –  – +)2 =    dx0
2 – dx1

2 – dx2
2 + dx3

2  =0 

ds(+– – –)2 =     dx0
2 – dx1

2 – dx2
2 – dx3

2 = 0   

ds(– – + –)2 =  – dx0
2 – dx1

2 + dx2
2 – dx3

2 =0 

ds(– + – –)2  = – dx0
2 + dx1

2 – dx2
2 – dx3

2 =0 

ds(+ –  + –)2 =    dx0
2 – dx1

2 + dx2
2 – dx3

2 =0 

ds(+ + – –)2  =     dx0
2 + dx1

2 – dx2
2 – dx3

2  =0                

ds(– – – – )2 =  – dx0
2 – dx1

2 – dx2
2 – dx3

2 = 0 

ds(+ + +  –)2  =      dx0
2 + dx1

2 + dx2
2 – dx3

2 =0 

ds (– + + –)2 = – dx0
2 + dx1

2 + dx2
2 – dx3

2 = 0 

ds(– + + +)2  =  – dx0
2 +d x1

2 + dx2
2 + dx3

2 =0           

ds(+ + – +)2   =     dx0
2 + dx1

2 – dx2
2 + dx3

2 =0 

ds(+ – + +)2  =    dx0
2 – dx1

2+ dx2
2 + dx3

2 = 0 

ds(– +  – +)2 = – dx0
2 + dx1

2 –  dx2
2 + dx3

2 =0 

ds(– – + +)2  =  – dx0
2 – dx1

2 + dx2
2 + dx3

2 = 0 

                                                                                                                         (4.21)   

with appropriate signatures 
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)()()()(

)()()()(

)()()()(

)()()()(

−−−−−−+−−+−+−+−−

++−+−−−+−−+++−−+

+−+−++−−+++−+−−−

+−++−++−−+++++++

.                 

(4.22)           

As a result of this averaging of metric 4-spaces with 16 types of the signa-

tures, only 16  4 = 64 mathematical dimensions remain at the first stage of com-

pactification. 

 

4.4 The relationship between a signature and a 4-space topology 

According to the classification of Felix Klein [2], metric spaces with intervals 

(4.21) can be divided into three topological classes: 

1st class: is a 4-spaces, the signatures of which consist of four identical 

signs [2]: 

                                x0
2  + x1

2 +x2
2 +x3

2 = 0        (+ + + +)                       (4.23) 

                                    – x0
2 – x1

2 – x2
2 – x3

2 = 0        (– – – –)        

 

are zero metric 4-spaces. These "spaces" have only one valid point, located at the 

beginning of the light cone. All other points of these 4-spaces are imaginary. In 

fact, the first of the Expressions (4.23) describes not the space, but a single point 

(or the "white" point), and the second one is a single antipoint (or the "black" 

point). 

2nd class: is a 4-spaces, the signatures of which consist of two positive and 

two negative signs [2]: 

                                      x0
2 – x1

2 – x2
2 + x3

2 = 0         (+ – – +)                       (4.24) 

                                      x0
2 + x1

2 – x2
2 – x3

2 = 0         (+ + – –)            

                                      x0
2 – x1

2 + x2
2  – x3

2 = 0        (+ – + –)                                          

                                   – x0
2 + x1

2 + x2
2 – x3

2 = 0         (– + + –) 

                                   – x0
2 – x1

2 +  x2
2 + x3

2 = 0        (– – + +) 

                                   – x0
2 + x1

2 – x2
2 + x3

2 = 0         (– + – +)          

       

are various options for 4-dimensional tori. 
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3rd class: is a 4-spaces, the signatures of which consist of three identical 

signs and one opposite [2]: 

                                     – x0
2  –x1

2 – x2
2 + x3

2 = 0        (– – – +)                       (4.25) 

                                     – x0
2 – x1

2 + x2
2 – x3

2 = 0        (– – + –)   

                                     – x0
2 + x1

2 – x2
2 – x3

2 = 0        (– + – –)                                          

                                        x0
2 – x1

2 – x2
2 – x3

2  = 0        (+ – – –)                                      

                                        x0
2 + x1

2 + x2
2 – x3

2 = 0        (+ + + –)                                    

                                        x0
2 + x1

2 – x2
2 + x3

2 = 0        (+ + – +)       

                                        x0
2 – x1

2 + x2
2 + x3

2 = 0        (+ – + +)        

                                     – x0
2 + x1

2 + x2
2 + x3

2 = 0        (– + + +)         

         

are oval 4-surfaces: ellipsoids, elliptical paraboloids, two-sheet hyperboloids. 

A simplified illustration of the relationship between the signature of a            

2-dimensional space and its topology is shown in Fig. 4.3. It can be seen from this 

Figure that the signature of the quadratic form is uniquely related to the topology 

of 2-dimensional space.  

                           
                    a) signature (+ +)           b) signature (– +);                    c) signature (+ 0) 

                         x3 = x1
2 + x2

2                   x3 = x2
2 – x1

2
                                                     x3 = x1

2 
 

                 the parabolic surface        the saddle surface                 the U-shaped surface 

 

Fig. 4.3. An illustration of the relationship between the signature                                                                        

of a 2-dimensional space and its topology [12] 

 

The sixteen types of signatures (4.22), corresponding to the 16 types of 

topologies metric spaces, form the matrix 

        ( )





















−−−−−−+−−+−+−+−−

++−+−−−+−−+++−−+

+−+−++−−+++−+−−−

+−++−++−−+++++++

=

33231303

32221202

31211101

30201000

)(

)()()()(

)()()()(

)()()()(

)()()()(

abdssign ,       (4.26) 

The properties of the signature matrix (4.26) partly coincide with the 

properties of the stignature matrix (3.2). 
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4.4.1 The Chess analogy 

The "Chess Analogy" is the amazing similarity of the Algebra of signature (AS) to 

the world of chess and the philosophy of Hinduism. 

Let's list these similarities: 

- The chessboard has 8 8 = 64 cells: of which 32 are black and 32 are white (see 

Fig. CA 1). 

 
 

 

 

 

Fig. CA 1 The chessboard consists of 32 white and 32 black cells. At the beginning of the game, 

there are 16 white pieces and 16 black pieces on the board 

 

Also in the signature matrix (4.26) there are 64 characters, of which 32 are 

«+» and 32 are «–»: 

  




















−−−−−−+−−+−+−+−−

++−+−−−+−−+++−−+

+−+−++−−+++−+−−−

+−++−++−−+++++++























)()()()(

)()()()(

)()()()(

)()()()(

'''''

'

'

'

HHVHHHIH

VHVVHVIV

HHVHHHIH

IHVIHIII

 

- At the beginning of the game, there are 32 chess pieces on the chessboard: 

16 white and 16 black (see Fig. CA 1). Also, within the framework of the Algebra 

of signatures, at each point of the m,n-vacuum there are sixteen 4-bases, which 

consist of rotating vectors of the electric field (see Fig. 2.8), i.e. "The Figures of 

light" and sixteen 4-bases associated with the corners of a cubic cell of a                   

3D-landscape (see Fig. 2.7), i.e. "The Figures of darkness"; 

- The signatures (topologies) of the 16 types of metric spaces (4.21) are sur-

prisingly similar to the characteristics of chess pieces (see Fig. CA 2): 

❖ two zero topologies (4.23) correspond to the “king” 

and “queen”;  

❖ six toroidal topologies (4.24) correspond to the three 

pairs of chess figures:  2 “bishops”, 2 “knights” and 

2 “rooks”;  

❖ eight oval topologies (4.25) correspond to the eight 

“pawns”.  

 
(+ – + +) 

pawn 

(– – – +) 

pawn 

(+ + – +) 

pawn 

(+ – – –) 

pawn 

(+ + + –) 

pawn 

(– + + +) 

pawn 

(– – + –) 

pawn 

(– + – –) 

pawn 

(– – + +)  

rook 

 (+ – + –)     

bishop 

(– + + –) 

knight 

(+ + + +) 

queen 

(– – – –) 

king 

(+ – – +) 

knight 

(– + – +) 

bishop 

(+ + – –) 

rook  

 

Fig. CA 2 The comparison of the signatures (topologies) of metric spaces with the chess pieces 
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4.5 The second stage of compactification of the extra dimensions. 

      The "m,n-vacuum balance condition" 

At the second stage of compactification of the extra dimensions, we define the 

additive superposition of all 16 metrics (i.e., intervals) (4.21) 

               ds
2  =  ds(+– – –)2  +   ds(+ + + +)2   +   ds(– – – +)2  +  ds(+ –  – +)2  +           (4.26) 

                        +  ds(– – + –)2  +   ds(+ + – –)2    +  ds(– + – –)2  +  ds(+ –  + –)2  +                       

                        +  ds(– + + +)2  +    ds(– – – – )2  +  ds(+ + +  –)2 +  ds (– + + –)2  + 

                  +  ds(+ + – +)2  +    ds(– – + +)2  +  ds(+ – + +)2  +   ds(– +  – +)2 = 0.   

Indeed, adding the metrics (4.21), we obtain                                         (4.27) 

ds
2 = (dx0dx0

 – dx1dx1
 – dx2dx2

 – dx3dx3)  +  (dx0dx0
 + dx1dx1

 + dx2dx2
 + dx3dx3) + 

      + (– dx0dx0
 – dx1dx1

 + dx2dx2
 – dx3dx3) + (dx0dx0

 – dx1dx1
 – dx2dx2

 + dx3dx3) +  

      + (– dx0dx0
 – dx1dx1

 + dx2dx2
 – dx3dx3) + (dx0dx0

 + dx1dx1
 – dx2dx2

 – dx3dx3) +  

      + (– dx0dx0
 + dx1dx1

 – dx2dx2
 – dx3dx3) + (dx0dx0

 – dx1dx1
 + dx2dx2

 – dx3dx3
 ) +          

      + (– dx0dx0
 + dx1dx1

 + dx2dx2
 + dx3dx3) + (– dx0dx0

 –dx1dx1– dx2dx2
 –dx3dx3) +  

      + (dx0dx0
 + dx1dx1

 + dx2dx2
 – dx3dx3)  +  (– dx0dx0

 +dx1dx1
 +dx2dx2

 – dx3dx3) +  

      + (dx0dx0
 + dx1dx1

 – dx2dx2
 + dx3dx3)  +  (– dx0dx0

 – dx1dx1+ dx2dx2
 +dx3dx3) + 

      + (dx0dx0
 – dx1dx1

 + dx2dx2
 + dx3dx3) + (– dx0dx0

 + dx1dx1
 –dx2dx2

 +dx3dx3) = 0.     

 

Instead of summing homogeneous terms in Expression (4.27), only the signs 

in front of these terms can be summed. Therefore, Expression (4.21) can be repre-

sented in the ranked form 

                                                                                                            (4.28)                                                                                                                                                                                                                                                                                                       

0 =  

0 = 

0 = 

0 = 

0 =                                                            

0 = 

0 = 

0 = 

0 = 

0 =  

 ( 0   0   0   0) 

 (+   +   +   +) 

 (–   –   –   + ) 

 (+   –   –   + ) 

 (–   –   +   – ) 

 (+   +   –   – ) 

 (–   +   –   – ) 

 (+   –   +   – ) 

 (–   +   +   +) 

 (0   0    0   0) + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(0   0   0   0) 

(–  –   –   – ) 

(+  +   +  – ) 

(–  +   +  – ) 

(+  +   –   +) 

(–   –   +  +) 

(+  –    +  +) 

(–   +   –  +) 

(+   –   –  –) 

(0   0   0   0) + 

= 0 

= 0 

= 0 

= 0 

= 0                                                              

= 0 

= 0 

= 0 

= 0 

= 0               
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where the addition (or subtraction) of the signs is performed according to the fol-

lowing rules: 

  (+) + (+) = 2(+)    (–) + (+) = (0)     

  (+) + (–) = (0)      (–) + (–) = 2(–),   

(+) – (+) = (0)      (–) – (+) = 2(–)      (4.29) 

(+) – (–) = 2(+)    (–) – (–) = (0).     

The sum of еру signs, both in the columns of the ranked Expression (4.28) 

and in their rows between the ranks, is equal to zero. Therefore, this ranked Ex-

pression will be called “the splitting of the metric zero”. 

The additive imposition of the 16 metric 4-spaces with the intervals (4.21) 

and with the corresponding signatures (i.e., topologies) (4.22) at each point of the              

m,n-vacuum leads to the formation of a zero Ricci-flat space. This space is very 

similar to the 6-dimensional Calabi-Yau manifold (see Fig. 4.4),  

                                         

Fig. 4.4. One of the realizations of a two-dimensional projection of three-dimensional visualization 

local section of a 6-dimensional Calabi-Yau manifold 

 

The second stage of compactification of the additional (mathematical) dimen-

sions led to their complete reduction. At the same time, the ranking Expression 

(4.28) is a mathematical formulation of the "m,n-vacuum balance condition". 

Definition 4.5.1 "The m,n-vacuum balance condition" is a statement that 

any manifestations in the m,n-vacuum should be mutually opposite: wave - anti-

wave, convexity - concavity, motion - antimotion, compression - stretching, etc., 

so that on average they are equal to zero. The local m,n-vacuum manifestations 

and anti-manifestations can be shifted and rotated relative to each other, but, on 
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average, over the entire m,n-vacuum region, they completely compensate for each 

other's manifestations, restoring the "m,n-vacuum balance". 

 

4.6 Operations with metric ranks 

Ranked Expression (4.28) allows to perform some operations in the vicinity of the 

investigated point O (see Fig. 2.5) without violating the "m,n-vacuum balance 

condition". Such operations include, for example, a symmetric transfer of the first 

columns to the other side of the equality with the inverted signs: 

0 =  

– = 

+ = 

– = 

+ =                                                            

– = 

+ = 

– = 

+ = 

0 =  

  (0    0    0) 

 ( +   +   + ) 

 ( –   –   + ) 

 ( –   –   + ) 

 ( –   +   – ) 

 ( +   –   – ) 

 ( +   –   – ) 

 ( –   +   – ) 

 ( +   +   +) 

 (0    0   0 ) + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

    (0   0   0) 

    (–   –   – ) 

    (+   +  – ) 

    (+   +   –) 

    (+   –   +) 

    (–   +   +) 

    (–   +   +) 

    (+   –   +) 

    (–   –   – ) 

    (0   0   0)+ 

= 0 

= + 

= – 

= + 

= –                                                              

= + 

= – 

= + 

= – 

= 0 

                                                                                                                  (4.30)  

or the transfer of any of the lines from the numerators of the ranks (4.28) to their 

the denominators, also with the inversion of a signs, for example:  

                                                                                                                        (4.31) 

0 =  

0 = 

0 = 

0 = 

0 =                                                            

0 = 

0 = 

0 = 

0 = 

 (0   0    0   0 ) 

 (+   +   +   + ) 

 (–   –   –   + ) 

 (+   –   –   + ) 

 (+   +   –   – ) 

 (–   +   –   – ) 

 (+   –   +   – ) 

 (–   +   +   +) 

 (+   +   –   +)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

  (0   0   0   0) 

  (–  –   –   – ) 

  (+  +   +  – ) 

  (–  +   +  – ) 

  (–   –   +  +) 

  (+  –    +  +) 

  (–   +   –  +) 

  (+   –   –  –) 

  (–   –   +  –)+ 

= 0 

= 0 

= 0 

= 0 

= 0                                                              

= 0 

= 0 

= 0 

= 0 

 

Such ranked operations correspond to certain symmetric vacuum manifesta-

tions, which will be considered below and investigated in [14, 15]. 
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4.7 The double-sided m,n-vacuum 

As it was shown in the previous paragraph the m,n-vacuum balance is not violated 

if at the ranks (4.28) transfer one line of a signs (i.e., the signature) from the nu-

merator to the denominator with the change of a signs to opposite ones according 

to the rules of arithmetic. 

For example, we transfer the signatures (– + + +) and (+ – – –) from the 

numerators of the ranks (4.28) to their the denominators                                

 

 

 

 

 

 

 

 

 

 

                                                                                                            (4.32) 

In this case, in the denominator of the left-hand rank (4.32), we get the sig-

nature of the Minkowski 4-space (+ – – –), and in the denominator of the right-

hand rank (4.31), we get the signature of the Minkowski 4-antispace (– + + +). 

The ranked Expression (4.32) is equivalent to the fact that the addition (i.e., 

additive overlay) of the 7 metric spaces with signatures (topologies) indicated in 

the numerator of the left-hand rank (4.32) form a metric Minkowski 4-space with 

the interval 

       ds(+ – – –)2 = c2dt2 – dx2 – dy2 – dz2 = dx0
2 – dx1

2 – dx2
2 – dx3

2 ,        (4.33) 

where 

          ds(+ – – –)2 = ds(+ + + +)2  + ds(– – – +)2  + ds(+ – – +)2 + ds(– – + –)2 +        (4.34) 

                         + ds(+ + – –)2 + ds (– + – –)2 + ds(+ – + –)2, 

this 4-space will be conventionally called the outer side of the m,n-vacuum (or                

a «subcont» is an abbreviation from the conventional name "substantial continu-

um"). 

(+   +   +   +) 

 (–   –   –   + ) 

 (+   –   –   + ) 

 (–    –  +   – ) 

 (+   +   –   – ) 

 (–   +   –   – ) 

 (+   –   +   – ) 

 (+   –   –   – )+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –   –   – ) 

(+  +   +  – ) 

(–  +   +  – ) 

(+  +   –   +) 

(–   –   +  +) 

(+  –    +  +) 

(–   +   –  +) 

(–   +   +  +)+ 

=0 

=0 

=0                                                  

=0  

=0 

=0 

=0 

=0 . 
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In the same way, the additive superposition of the 7 metric spaces with sig-

natures indicated in the numerator of the right-hand rank (4.32) forms a metric 

Minkowski 4-antispace with the interval 

   ds(– + + +)2 = – c2dt2 + dx2 + dy2 + dz2 = – dx0
2 + dx1

2 + dx2
2 + dx3

2 ,     (4.35)  

where          

    ds(– + + +)2  = ds(– – – – )2 + ds(+ + +  –)2 + ds(– + + –)2 + ds(+ + – +)2 +             (4.36) 

                    + ds(– – + +)2 + ds(+ – + +)2 + ds(– + – +)2.         

This 4-space will be conventionally called the inner side of the m,n-vacuum 

(or an «antisubcont» is an abbreviation from the conventional name "antisubstan-

tial continuum"). 

Definition 4.7.1 The concepts of a «subcont» and an «antisubcont» are 

mental constructions, which are intended only to create the illusion of "visibility" 

of two adjacent mutually opposite sides of one m,n-vacuum. These concepts are 

introduced only to facilitate the visualization of intra-vacuum processes, but they 

have nothing to do with reality. However, in terms of these mental concepts, real 

vacuum effects can be inspired. 

 

In expanded form, the ranks (4.32) have the following form              (4.37)                                                                                                          

ds(+ + + +)2 =      dx0
2 + dx1

2 + dx2
2 + dx3

2  

ds(– – – +)2 = – dx0
2 – dx1

2 – dx2
2 + dx3

2  

ds(+ –  – +)2 =    dx0
2 – dx1

2 – dx2
2 + dx3

2   

ds(– – + –)2 =  – dx0
2 – dx1

2 + dx2
2 – dx3

2  

ds(– + – –)2  = – dx0
2 + dx1

2 – dx2
2 – dx3

2  

ds(+ –  + –)2 =    dx0
2 – dx1

2 + dx2
2 – dx3

2  

ds(+ + – –)2  =     dx0
2 + dx1

2 – dx2
2 – dx3

2 

ds(+– – –)2 =     dx0
2 – dx1

2 – dx2
2 – dx3

2 

ds(– – – – )2 =  – dx0
2 – dx1

2 – dx2
2 – dx3

2 
 

ds(+ + +  –)2  =      dx0
2 + dx1

2 + dx2
2 – dx3

2  

ds (– + + –)2 = – dx0
2 + dx1

2 + dx2
2 – dx3

2 
 

ds(+ + – +)2   =     dx0
2 + dx1

2 – dx2
2 + dx3

2  

ds(+ – + +)2  =    dx0
2 – dx1

2+ dx2
2 + dx3

2  

ds(– +  – +)2 = – dx0
2 + dx1

2 –  dx2
2 + dx3

2  

ds(– – + +)2  =  – dx0
2 – dx1

2 + dx2
2 + dx3

2  

ds(– + + +)2  =  – dx0
2 +d x1

2 + dx2
2 + dx3

2        

 

The operation described by the ranked Expression (4.32) makes it possible 

to "reveal" the two-sided of the m,n-vacuum with the number of the mathematical 

dimensions 4 + 4 = 8 = 23. Therefore, we propose to call such a two-sided 8 - di-

mensional space a 23-m,n-vacuum, under preservation of the 23-m,n-vacuum bal-

ance condition  

                                                 ds(+ – – –)2 + ds(– + + +)2 = 0,                                (4.38) 
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with a ranked equivalent 

 

                                            (+ – – –) + (– + + +) = (0 0 0 0)                          (4.39) 

 

or in transposed form 

 

                                                           (+ – – –)                                               (4.40) 

                                                           (– + + +) 

                                                           (0 0  0 0)+ 

 

In this terminology, the ranked Expression (4.28) is equivalent to the            

26-m,n-vacuum balance condition with the sixteen 4-dimensional sides (or faces), 

since the number of mathematical dimensions of a such 16-sided space is                 

4 × 16 = 64 = 26. 

Philosophical understanding of the ranked Expression (4.32) can lead to the 

roots of the religious traditions, where the number 7 has a sacred meaning, and 

the two sides of the 23-m,n-vacuum correspond to the Unity and Opposition of the 

Masculine and Feminine Principles. 

Let’s recall that in the general theory of relativity (GR) of A. Einstein there 

is only one metric 4-space with one signature, for example, (+ – – –). Whereas in 

the light-geometry of vacuum developed here, the any m,n-vacuum can have at 

least two sides (i.e., mutually opposite metric 4-spaces): the outer side (i.e., sub-

cont) and the inner side (i.e., antisubcont), with the corresponding mutually oppo-

site signatures (+ – – –) and (– + + +). 

 

4.8 The binary triads 

Note that not only the ranked Expression (4.32) leads to the antipode dyad: the 

Minkowski 4-space with signatures (+ – – –) and the Minkowski 4-antispace with 

signatures (– + + +). 

The ranked binary triads presented below lead to this dyad too 
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                                                    (4.41)                                                                                              

 

 

                                                    (4.42) 

 

 

 

                                     (4.43) 

 

 

These ranked Expressions (which we will call binary triads) also satisfy the 

m,n-vacuum balance condition, and play an important role in vacuum chromody-

namics developed in [14,15]. 

 

4.9 The transverse stratification of the «vacuum» 

Like the ranked Expression (4.31), any pair of a metric 4-spaces with mutually 

opposite signatures can be represented as a sum of the seven metric 4-spaces with 

other signatures. 

For example, the conjugate pair of intervals ds(– + + –)2 and ds(+ – – +)2 with 

mutually opposite signatures (– + + –) and (+ – – +) can be expressed by an addi-

tive superposition of the seven metric 4-spaces with signatures                                                                                                                                                                                                                                                                            

 

 

  (+   +   +   +) 

 (–    –   –   +) 

 (–   –   +   – ) 

 (+   +   –   – ) 

 (–   +   –   – ) 

 (+   –   +   – ) 

 (–   +   +   +) 

 (–   +   +   –) + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –   –   – ) 

(+  +   +  – ) 

(+  +   –   +) 

(–   –   +  +) 

(+  –    +  +) 

(–   +   –  +) 

(+   –   –  –) 

(+   –   –  +)+ 

= 0 

= 0                         (4.44) 

= 0                                                              

= 0 

= 0 

= 0 

= 0 

= 0               

 (–  –  –  +)   +  (+  +  +  –)    = 0               

 (+  –  +  –)   +  (–  +  –  +)    = 0 

 (+  +  –  –)   +  (–  –  +  +)    = 0  

 (+  –  –  –)+  +  (–  +  +  +) +  = 0 

 (–  –  +  –)   +  (+  +  –  +)    = 0               

 (+  +  –  –)   +  (–  –  +  +)    = 0 

 (+  –  –  +)   +  (–  +  +  –)    = 0  

 (+  –  –  –)+  +  (–  +  +  +) +  = 0 

 (–  –  +  –)   +  (+  +  –  +)    = 0               

 (+  +  –  –)   +  (–  –  +  +)    = 0 

 (+  –  –  +)   +  (–  +  +  –)    = 0  

 (+  –  –  –)+  +  (–  +  +  +) +  = 0 
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Similarly, out of 256 metrics with signatures (4.9), 128 conjugate pairs of 

metrics can be distinguished, each of which can be expressed in terms of a super-

position of a 7 + 7 = 14 metric 4-spaces. As a result of mathematical dimensions, 

it become 128  14  4 = 3584. 

In turn, the conjugate pairs of a 4-spaces can be similarly decomposed into 

the sums of a 7 + 7 = 14 subspaces, and this can continue indefinitely. 

The result is a vacuum light-geometry balanced with respect to the “split ze-

ro”, in which the “vacuum” is first represented in the form of an infinite number 

of m,n-vacuums nested into each other (see § 2.1). This representation is called 

the longitudinal stratification "vacuum" (Definition № 2.1.5). 

Then each m,n-vacuum splits into an infinite number of metric 4-subspaces 

with 16 types of signatures. At the same time, since all longitudinal layers (i.e., 

m,n-vacuums) split in the same way, the entire “vacuum” is split into 4-subspaces 

with 16 types of signatures. Such a global splitting will be called a transverse 

stratification of the «vacuum».  

Definition 4.9.1 The transverse stratification of a "vacuum" is its represen-

tation as a global additive superposition of an infinite number of the metric                       

4-subspaces with 16 types of the signatures (topologies). 

Definition 4.9.2 The transverse stratification of a m,n-vacuum is its repre-

sentation as an additive superposition of an infinite number of the metric 4-sub-

spaces with 16 types of the signatures (topologies). 

 

4.9.1 The Musical analogy 

The “Musical harmony” is manifested in the numerical proportions and ratios of 

such discrete concepts as: sound, rhythm, tempo, meter, size, mode, tonality, dia-

tonic, interval, chord, chromatic, melody, texture, sequence, modulation. 

All these concepts, one way or another, are present in the Algebra of signa-

tures. For example, in music theory, the sound range is divided into 8 octaves 

(eights), in each octave 7+1= 8 notes, 6 tones and 12 semitones. The duration of 
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the sounding of notes is divided into beats from 1 to 1/256 (where 256 =16×16), 

etc. 

 

   
    7 notes of one octave + 1 note  

of the next octave 

             

 

 

    Note duration   

                                                    

 

In the Algebra of signatures, as well as in musical harmony, the signatures 

form linked octaves {see the Expression (4.44)} и chords {see the expressions 

(4.41) -(4.43)}, and the signature sets satisfying the vacuum balance condition are 

divided into 2, 4, 8, 16, 32, 64 and 256 signs «+» and «–» etc. 

Тhe "Algebra of signatures" does not kill Harmony (as the Pushkin’s Salieri 

claimed). On the contrary, the Algebra of signatures delights and fills the Soul 

with the Triumph of Heavenly Wisdom hidden in the Great Four-Letter Name of 

the CREATOR (TETRAGRAMMATON) 

 י-ה-ו-ה
Recall that The Algebra in translation from Aramite: AL is GOD, Gebor is Power 

(i.e. Algebra is the Power of the CREATOR) 

 

5 THE SPINOR LIGHT-GEOMETRY 

5.1 The spin-tensor representation of metrics with different signatures 

Let's go back to considering the interval 

            ds(+ – – –)2 = dx0
2 – dx1

2 – dx2
2 – dx3

2 with signature (+ – – –).     (5.1)       

For brevity, we omit the differentials in this Expression and write the quad-

ratic form (5.1) in the form 

                                         s2 = x0
2– x1

2 – x2
2 – x3

2 .                                (5.2)  
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As is known, the quadratic form (5.2) is the determinant of the Hermitian           

22-matrix  

).(,02

3

2

2

2

1

2

0

3021

2130

det3021

2130
−−−+=−−−=

−−

++
=









−−

++
signxxxx

xxixx

ixxxx

xxixx

ixxxx

 

(5.3)  

The fact that this matrix is Hermitian can be easily verified by direct calcu-

lation 

                       .
3021

2130

3021

2130










−−

++
=









−−

++
+

xxixx

ixxxx

xxixx

ixxxx
                       (5.4)  

In the spinor theory, matrices of the form (5.4) are called the mixed Hermit-

ian spin-tensors of the second rank [9]. 

We represent the 22-matrix (5.4) in the expanded form 

   ,
10

01

0

0

01

10

10

01
3210

3021

2130

4 






−
−







 −
−









−

−
−








=









−−

++
= x

i

i
xxx

xxixx

ixxxx
А     (5.5) 

where                                                                                                                                                 

    







−
=







 −
=









−

−
=








=

−−−+−−−+−−−+−−−+

10

01
;

0

0
;

01

10
;

10

01 )(
3

)(
2

)(
1

)(
0 

i

i

  

 

is a set of Pauli matrices. 

In the spinor theory an A4-matrices of the form (5.5) are uniquely associated 

with quaternions of the type 

                             3322110 xexexexq


+++= ,                                (5.6)  

under the isomorphism           

                .
10

01
;

0

0
;

01

10
321 







−
→







 −
→









−

−
→ e

i

i
ee


             (5.7)  

Similarly, each quadratic form with the corresponding signature: 

:                                                                                                              (5.8)                                                                                                            
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can be represented as a spin-tensors or as an A4-matrix, which are shown in the 

Table 5.1: 

Table 5.1 

1 

.
0

0
;

01

10
;

0

0
;

10

01

;
0

0

01

10

0

0

10

01

)(;0

)(

3

)(

2

)(

1

)(

0

3210

3021

2130

2

3

2

2

2

1

2

0

det3021
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
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




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


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



−
=








=




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


=
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







−
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


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


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
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


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
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


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
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


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++
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


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



−−
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++++++++++++++++

i

i

i

i
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i

i
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i

i
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signxxxx
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
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
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s(+ + + +)2 =    x0
2 + x1

2 + x2
2 + x3

2 

s(– – – +)2 =  – x0
2 – x1

2 – x2
2 + x3

2  

s(+  –  – +)2 =    x0
2 – x1

2 – x2
2 + x3

2  

s(+– – –)2 =     x0
2 – x1

2 – x2
2 – x3

2 

s(– – + –)2 =  – x0
2 – x1

2 + x2
2 – x3

2 

s(– + – –)2  = – x0
2 + x1

2 – x2
2 – x3

2 

s(+ –  + –)2 =    x0
2 – x1

2 + x2
2 – x3

2 

s(+ + – –)2  =   x0
2 + x1

2 – x2
2 – x3

2               

s(– – – – )2 =  – x0
2 – x1

2 – x2
2 – x3

2 

s(+ + +  –)2  =   x0
2 + x1

2 + x2
2 – x3

2 

s(– + + –)2 = – x0
2 + x1

2 + x2
2 – x3

2 

s(– + + +)2   = – x0
2 + x1

2 + x2
2 + x3

2 

s(+ + – +)2   =    x0
2 + x1

2 – x2
2 + x3

2 
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2 – x1

2 + x2
2 + x3

2 
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Each an А4-matrix from the Table 5.1 is assigned a "colored" quaternion 

with the corresponding stignature (3.20), where the objects represented below are 

used as the imaginary units 
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(5.9) 

where σij are the Pauli-Cayley spin-matrices, which are generators of the Clifford 

algebra satisfying the conditions 
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Table 5.1 shows only a special cases of the spin-tensor representations of 

quadratic forms. For example, the determinants of all thirty-five 22 matrices 

(Hermitian spin-tensors):                                                                                (5.11)       
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equal to the same quadratic form . s 2
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In a number of cases, the discrete degeneracy (i.e., latent multivaluedness) 

of the initial ideal state of the m,n-vacuum when deviating from ideality, can lead 

to splitting (quantization) into a discrete set of dissimilar states of its transverse 

layers. 

Sixteen types of A4-matrices are equivalent to 16 "color" quaternions (3.20). 

For clarity, all types of "colored" A4-matrices are summarized in Table 5.2. 

                                                                                                    Table 5.2 
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The Algebra of signature associates a zero-balanced superposition of the af-

fine spaces with the 16 possible signatures: 

  ds =  (– dx0 – dx1 – dx2 – dx3)  +  (   dx0 + dx1+ dx2 + dx3) + 

         + (   dx0 + dx1+ dx2 – dx3)  +  (– dx0 – dx1 – dx2 + dx3) +  

         + (– dx0 + dx1+ dx2 – dx3)  +  (   dx0 – dx1 – dx2 + dx3) +  

          + (   dx0 + dx1 – dx2 + dx3) + (– dx0 –  dx1 +  dx2 – dx3) +                       

         + (– dx0 – dx1+ dx2 + dx3)  +  (   dx0 + dx1 – dx2 – dx3) +        

         + (   dx0 – dx1 + dx2 + dx3) +  (– dx0 + dx1 – dx2 – dx3) +  

         + ( – dx0+ dx1 – dx2+ dx3)  +  (   dx0 – dx1 + dx2 – dx3) + 

         + (   dx0 – dx1 – dx2 – dx3)  +  (– dx0 + dx1+ dx2 + dx3) = 0,       (5.12) 

 

with one of the variants of an additive superposition of a 16-and A4-matrices: 
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                                                                                                            (5.13)   

The Expression (5.13) is equal to the zero 22-matrix corresponding to the              

m,n-vacuum balance condition. 

The mathematical apparatus presented here is convenient for solving a num-

ber of a problems associated with the multilayer intravacuum rotational processes. 
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Fig. 1.22.3. Fractal illustration of the structure of 2n-m,n-vacuum length  

at the depth level of consideration 

 

5.2 Using a spin-tensors with different stignatures 

Let's look at two examples using spin-tensors. 

Example 1 Suppose are given a matrix-column, and her Hermitian conju-

gate matrix-line 

                                          ( )





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


21

2

1
,, ss

s

s
 ,                                         (5.14)  

that describe the state of the spinor.  

The spin projection on the coordinate axis for the case when the metric       

4-space has the signature  (+ – – –) can be determined using the spin-tensors (5.4) 
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Example 2 Let a forward wave be described by  
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and its reverse wave  
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where a+ and a-  are the forward and reverse wave amplitudes. In general, the 

complex numbers:        
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contain an information about the phases of the waves  φ+  and  φ– .  

Mutually opposing waves (5.16) and (5.17) can be represented as a two-

component spinor:  
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and an Hermitian conjugated spinor to him
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The conditions of the normalization in this case are expressed by the equa-

tion         

( )
( ) ( )

( )

( )
.,

22

2

2
2

*

2

*

2

1
21 −+

−

−

−−

+
−−

−

−

+
 +=






























==








aa

ea

ea
eaea

s

s
ss

rcti

rcti
rctircti

















         

                                                                                                            (5.20)  

To find the spin projections (i.e., circular polarization) of the light beam on 

the coordinate axes, we use spin-tensors [8] 
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which is associated with the 3-dimensional metric  
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with signature (– – –).  

Putting x1 = x2 = x3 = 1 into the Expression (5.21), we consider the projection 

of the spin on the coordinate axes  
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Substituting to this Expression the spinors (5.19) and (5.20), we obtain the 

following three spin projection on the corresponding coordinate axis x1 = x,                      

x2 = y,  x3 = z:  
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    (5.26)                              

In the case φ+= φ–= 0, Expressions (5.24) – (5.26) take the following simpli-

fied form:                                      
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22

−+ −= aasz .     

In the case of equality of the amplitudes of the forward and reverse waves                    

a+ = a–, instead of the Expressions (5.27) we obtain the following averaged spin 

projections 

                                         0=zs ,                                                                (5.29)                                             

                                         ( ) krtasx −= + 2cos2 2
,                                                          

                                         ( ) krtas y −= + 2sin2 2
.                                
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The projection of the spin (i.e., the rotating vector of the electric field) on 

the direction of propagation of the light beam Z is unchanged and equal to zero. 

Moreover, its projection onto the XY plane, perpendicular to the direction of prop-

agation of this ray, rotates around the Z axis with an angular velocity  = 4с/.  

Thus, the spinor concept of the propagation of a conjugate pair of waves 

leads to a description of the circular polarization without invoking an additional 

hypotheses. 

Similarly can be performed the analysis of wave propagation in a 3 - dimen-

sional metric spaces with a signatures: (– – –), (+ – –), (– + –), (– – +), (+ + +),                     

(– + +), (+ – +), (+ + –). 

 

6 DIRAC’S “VACUUM” 

6.1 The Dirac stratification of a m,n-vacuum 

Consider the Dirac’s stratification of a quadratic form using for example  

the metric                                                                                                        (6.1) 

222222 dzdydxdtcds +++= = dx0
2 + dx1

2 + dx2
2 + dx3

2 with signature (+ + + +).          

Let’s  represent this metric as a product of the two affine (linear) forms 
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Expanding the parentheses in this Expression, we get 
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0

3

0

3

0


= == =

+==
 




 


  dxdxdxdxsdsd      (6.3) 

There are at least two options for determining the quantities  that satisfy 

the equality condition of the Expressions (6.1) and (6.3): 

     1) the method of the Clifford aggregates (for example, quaternions); 

     2) Dirac's method. 

In the first case, the linear forms included in the Expression (6.2) are repre-

sented as a pair of the affine aggregates:  
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                                     zdydxdtcdsd +++=
3210                              (6.4) 

                                     zdydxdtcdsd +++=
3210 

                       
(6.5)

 
with the stignature {+ + + +}, 

where   are an objects satisfying the anticommutative condition of the Clifford 

algebra 

                                    η   +   η  = 2 η ,                                                           (6.6)   

where 
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for
 – the Kronecker symbols.               (6.7) 

In the second case, the Dirac method assumes instead of the Crohneker 

symbols (6.7) to use the unit matrix 

                                   ,

1000

0100

0010

0001





















=                                      (6.8) 

then condition (6.6) is satisfied, for example, by the following set of the              

44-Dirac matrices: 
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(6.9)    

These matrices can be regarded as generators of the corresponding Clifford 

algebra. 

In this case, Expression (6.3) takes the matrix form 

        

( ) ,)(
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  dxdxdxdxdsii     (6.10)  
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The Expression (6.10), taking into account (6.8), can be represented as 
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                                                                                                                        (6.12)         

Let’s return to the quadratic form (6.1) and its Dirac stratification (6.10) 
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where                            .
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Consider all possible ways to write the Expression (6.13). 

We use the following basis of sixteen all possible γ
(ρ)-matrices of Dirac: 
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                                                                                                                                                                (6.15)  

 

 

The Dirac method, in contrast to the method of the affine aggregates, allows 

one to simultaneously "stratify" metric 4-spaces with four metrics that are compo-

nents of the matrix (6.11). 

In the Algebra of signatures, we consider quadratic forms (5.8) with a six-

teen possible signatures:              

                                                                                                               (6.16) 

ds(+ + + +)2 =        dx0
2 + dx1

2 + dx2
2 + dx3

2  

 

 ds(– – – +)2 =  – dx0
2 – dx1

2 – dx2
2 + dx3

2  

 

 ds(+ –  – +)2 =    dx0
2 – dx1

2 – dx2
2 + dx3

2  

 

 ds(+– – –)2 =     dx0
2 – dx1

2 – dx2
2 – dx3

2 

ds(– – – – )2 =  – dx0
2 – dx1

2 – dx2
2 – dx3

2 

 

ds(+ + +  –)2  =      dx0
2 + dx1

2 + dx2
2 – dx3

2  

 

ds (– + + –)2 = – dx0
2 +  dx1

2 + dx2
2 – dx3

2 

 

ds(– + + +)2   =  – dx0
2 + dx1

2 + dx2
2 + dx3

2 
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 ds(– – + –)2 =  – dx0
2 – dx1

2 + dx2
2 – dx3

2  

 

 ds(– + – –)2  = – dx0
2 + dx1
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 ds(+ –  + –)2 =    dx0
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2  
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2+ dx2
2 + dx3
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ds(– +  – +)2 =  – dx0
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2 – dx2
2 + dx3

2 

 

ds(– – + +)2  =   – dx0
2 – dx1
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2 + dx3

2
 

 

Each of them can also be "stratified" by the Dirac method 
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)()(2),(

 



  dxdxds bаbа

ii ,                               (6.17)                           

where                 

         

                                           
(a)

 (b)  =  b 
(ab)

 ,                                       (6.17а)   

  

but in this case each a b
(ab)-matrix has the corresponding signature: 
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                                                                                                                        (6.18)  

The signs in front of the ones in the diagonal b
(ab)-matrices correspond to 

the sets of signs in the components of the signature matrix (4.26) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .
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+−+−++−−+++−+−−−

+−++−++−−+++++++

 

In this paragraph, for brevity, we will temporarily omit the superscripts and 

instead of the “b
(ab)-matrix” we will write the “b-matrix”. 

Let’s return to the Dirac stratification of the quadratic form (6.10) 
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and consider all possible options for its disclosure. 

For each of the sixteen γ
(ρ)-matrices (6.15), we can choose a second                

γ
()-matrix from the same set, such that their product is equal to the b-matrix 

(6.20). For example: 

                              .

1000

0100

0010

0001

000

000

000

000

000

000

000

000





















=





















−

−

−

−





















i

i

i

i

i

i

i

i

                     

(6.21) 

Each a γ
(ρ)-matrix (6.15) can have one of 16 possible stignatures. For ex-

ample:                                                                                                             (6.22) 
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For each of these γρ
ij-matrices we can also choose a second γ

nj-matrix, the 

product with which leads to the b-matrix (6.20). Thus, taking into account 16 
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signatures, the 16  16 = 256 γρ-matrices are obtained from 16 γρ
ij-matrices 

(6.15). 

Each a γρ
ij-matrix (6.22) can be transformed into one of 16 mixed matrices. 

Let’s clarify this statement using the example of the γ11
13-matrix: 
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                                                                                                                        (6.23) 

 

When all 256 γρ
ij-matrices (6.23) are mixed in this way, a basis of                   

163=25616=4096 nkγρ
ij-matrices is obtained. Therefore, in this case, the                    

b-matrix (6.20) can be given by one of 4096 products of pairs of a                             

nkγρ
ij-matrices. 

In turn, all sixteen b-matrices (6.18) can be given by 164 = 65536 different 

versions of the pair products of the vc
nk

 γ lm
ij-matrices. 

Similarly, we can continue to build up the basis of generalized Dirac             

y-matrices to infinity. 
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Above, the Dirac stratification of only one quadratic form (6.1) was consid-

ered. All other metrics (6.16) are "foliated" in the same way. 

The entire collection of vc
nk

 γ lm
ij-matrices will be called generalized Dirac 

matrices, and the m,n-vacuum prepared by means of these matrices, will be called 

the Dirac stratification of the m,n-vacuum. 

 

7 THE CURVED AREA OF A VACUUM 

7.1 The curved area of a m,n-vacuum 

Let’s consider a curved 3D area of a vacuum. If the wavelength m,n of the test 

monochromatic light beams is much less than the dimensions of the vacuum ir-

regularities, then in this area the cubic cell of the m,n-vacuum (i.e., the cubic cell 

of 3Dm,n-landscape, limited by these rays) will be curved (see Fig. 7.1). 

 

               

                         a)                                                                   b)                   

Fig. 7.1  a) The deformed cubic cell of the m,n-vacuum;  b) One of a corners of the curved cube 

 

We consider one of the eight vertices of the curved cube of a m,n-vacuum            

(see Fig. 7.1 a). Let’s replace the distorted edges emerging from this vertex with 

the distorted axes of the curvilinear coordinate system x0(а), x1(а), x2(а), x3(а)           

(see Fig. 7.1 b). The same edges of the original, ideal cube will be denoted by the 

pseudo-Cartesian coordinate system x0(а), x1(а), x2(а), x3(а). 
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The distortions of the angle of the considered cube of a m,n-vacuum can be 

decomposed into two components:  

1) the change in the lengths (compression or expansion) of the axes x0(а), 

x1(а), x2(а), x3(а) while maintaining right angles between these axes; 

2) the deviations of the angles between the axes x0(а), x1(а), x2(а), x3(а)  from 

straight lines while maintaining their lengths. 

Let's consider these affine distortions separately. 

1) Suppose that only the lengths of the axes x0(а), x1(а), x2(а), x3(а) have 

changed during the curvature. Then these axes can be expressed in terms of the 

axes of the original ideal cube x0(а), x1(а), x2(а), x3(а) using the corresponding trans-

formations of coordinates: 

             x0(а) = α00
(а)x0(а) + α01

(а)x1(а) + α02
(а)x2(а) + α03

(а)x3(а);                 

             x1(а)  = α10
(а)x0(а) + α11

(а)x1(а) + α12
(а)x2(а) + α13

(а)x3(а);                      (7.1) 

             x2(а) = α20
(а)x0(а) + α21

(а)x1(а) + α22
(а)x2(а) + α23

(а)x3(а);                          

            x3 (а) = α30
(а)x0(а) + α31

(а)x1(а) + α32
(а)x2(а) + α33

(а)x3(а) ,               

where     

                                        αij
(a) =dxi(a)/dxj(a)                                                                 (7.2)        

is the Jacobian of the transformation, or the components of the elongation tensor. 

2) Let now only the angles between the axes of the coordinate system              

x0(а), x1(а), x2(а), x3(а) be subject to change, and the lengths of these axes remain 

unchanged. In this case, it is sufficient to consider only the change in the angles 

between the basis vectors e0
(a), e1

(a), e2
(a), e3

(a) of the distorted frame of refer-

ence. 

It is known from vector analysis that the basis vectors of the distorted         

4-basis e0
(a), e1

(a), e2
(a), e3

(a)  can be expressed in terms of the original basis vec-

tors e0
(a), e1

(a), e2
(a), e3

(a) of the orthogonal 4-basis by means of the following sys-

tem of linear equations: 

 



  

The Algebra of signature                                                                                                                                    71 

____________________________________________________________________________________________ 

 
 

                 e0
(a) = β00(a) e0

(a) + β01(a) e1
(a) + β02(a) e2

(a) + β 
03(a) e3

(a);                           

                 e1
(a) = β10(a) e0

(a) + β11(a) e1
(a) + β12(a) e2

(a) + β13(a) e3
(a);                  (7.3) 

                 e2
(a) = β20(a) e0

(a) + β21(a) e1
(a) + β22(a) e2

(a) + β23(a) e3
(a);                          

                 e3
(a) = β30(a) e0

(a) + β31(a) e1
(a) + β32(a) e2

(a) + β03(a) e3
(a),              

where 

                          β pm(a) = (ep
(a) em

(a)) = cos (ep
(a) ^em

(a))                         (7.4) 

is direction cosines. 

The systems of the Equations (7.1) and (7.3) can be represented in a com-

pact form: 

                                           xi 
(a) = αij

(a) x j(a) ,                                                             (7.5) 

                                           ep
(a) = β pm(a) em

(a) .                                                           (7.6)          

The distortions of the remaining 7 angles of the curved cube of a m,n-

vacuum (see Fig. 7.1) (more precisely, the fifteen remaining 4-bases, see Fig. 2.7) 

are described in a similar way. 

Let’s write, for example, vector (4.1) in a distorted 4-basis 

                                      ds (7) =  ei(7)dx i (7).                                                               (7.7) 

Taking into account (7.5) and (7.6), the vector (7.7) can be represented as 

                              ds (7) = β pm(7) em
(7)αpj

(7)dxj(7).                                                     (7.8) 

Similarly, all vertices of the distorted cube of a m,n-vacuum can be repre-

sented by the vectors 

                                 ds (a) = β pm(a) em
(a) αpj

(a)dxj(a),                                                (7.9) 

where a = 1,2, ...,16. 

 

7.2 The curved metric 4-spaces 

Let’s consider two the vectors (4.1) and (4.2) given in the 5th and 7th curved af-

fine spaces 

                                      ds (5)= βln(5)en
(5)αlj

(5)dxj,                                                     (7.10) 
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                                      ds (7)= βpm(7)em
(7)αpi

(7)dxi.                                                  (7.11) 

We find the scalar product of these vectors 

    ds (7,5)2 = ds (7)ds (5) = βpm(7)em
(7)αpi

(7)βln(5)en
(5)αlj

(5)dxidxj = сij
(7,5)dxidx j,     (7.12) 

where  

                           сij
(7,5)=  β

pm(7)em
(7)αpi

(7)βln(5)en
(5)αlj

(5)                             (7.13) 

are the components of the metric tensor of the (7,5)-th metric 4-space. 

Thus, we have obtained the interval of the (7,5)-th metric 4-space 

                                        ds (7,5)2 = сij
(7,5)dxidxj                                                        (7.14) 

with signature (4.6) (+ + + –) and metric tensor 
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cccc

cccc

cccc

cccc

cij .                            (7.15)     

Similarly, the scalar product of any two of the 16 vectors (7.9) 

                                    ds (a)= βpm(a)em
(а)αpi

(a)dxi,                                                  (7.16) 

                                     ds (b) = βln(b)en
(b)αlj

(b)dxj
                                                     (7.17) 

leads to the formation of an «atlas» consisting of 16×16=256 all possible curved 

4-sheets (i.e. metric 4-spaces) with the metrics 

                                   ds (a, b)2 = сij
(a, b)dxidxj,                                                             (7.18) 

where a = 1,2,3, ..., 16; b = 1, 2, 3, ..., 16, with the corresponding signatures (4.9) 

and the metric tensors 
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c                            (7.19)  

where                                          

                          сij
(a, b)=  β

pm(a)em
(a)αpi

(a)βln(b)en
(b)αlj

(b)                             (7.20) 

are the components of the metric tensor of the (a,b)-th curved metric 4-space. 
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7.3 The 4-strain tensor 

In the classical theory of elasticity and in the general theory of relativity, the actu-

al state of the local volume of an elastic-plastic medium (in particular, the Einstein 

vacuum) is described by only one "frozen in" reference system with the corre-

sponding 4-basis. This results in the analysis of the only one quadratic form  

                            ds 2 = gij dxjdxj
  

 with signature (+ – – –),                          (7.21) 

where gij are the components of the metric tensor of the local area of the curved 

metric space (there are 16 of these components, but due to the symmetry gji = gij, 

only 10 are significant). 

The quadratic form (7.21) is compared with the quadratic form of the initial 

ideal state of the same local area of the elastic-plastic medium [6]  

                    ds0
2 = gij

0dxidxj   with the same signature (+ – – –).          (7.22) 

Subtracting the metric of the initial state (7.22) from the metric of the actual 

state (7.21), we obtain [6] 

                           
ji

ij

ji

ijij dxdxdxdxggdssd 2)( 02

0

2 =−=− ,                     (7.23) 

where                                            )(
2

1 0
ijijij gg −= ,                                       (7.24) 

is tensor of the 4-strains, which is the subject of the classical theory of elasticity. 

The light-geometry of the m,n-vacuum developed here, based on the Alge-

bra of signatures, differs from the classical theory of an elasticity in that the inves-

tigated local volume of an elastic-plastic medium (in this case the m,n-vacuum) is 

described by more than one 4-basis associated with one of the eight corners of the 

investigated cube (see Fig. 7.1a,b), but with the all sixteen curved 4-bases (see the 

same Fig. 7.1 a), the beginning of which is at the investigated point O (see             

Fig. 2.5 and 2.6). 
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This circumstance leads to the fact that instead of one metric of the type 

(7.21) in the light-geometry of a m,n-vacuum, there are 256 metrics (7.18) 

                                          ds(a,b)2 = сij
(a,b)dxidxj                                      (7.25) 

with the corresponding signatures (4.9) or (4.20), which describe the same volume 

of the studied space (in particular, a m,n-vacuum) from different sides. 

In this case, the metric-dynamic state of the investigated volume of the elas-

tic-plastic medium (in particular, a m,n-vacuum) is described not by 16 numbers 

(i.e., by the components of the metric tensor gji), but by the 25616 = 4096 com-

ponents of the 256 tensors сji
(a,b) (7.19). 

This not only achieves a much more accurate description of the curved vol-

ume of an elastic-plastic medium (in particular, a m,n-vacuum) in the vicinity of 

point O (see Fig. 2.5), but also prepares of the logical basis for identifying a num-

ber of vacuum effects that were previously not considered due to the lack of a 

proper mathematical apparatus. 

We note once again that the mathematical apparatus of the light-geometry of 

a m,n-vacuum based on the Algebra of signatures developed here is suitable for 

studying the properties of not only objective and/or subjective emptiness, but also 

any other 3-dimensional continuous media in which wave disturbances (light, 

sound, phonons) propagate at a constant speed. 

 

7.4 The first stage of the compactification of a curved dimensions 

Just as it was done in § 4.3, at the first stage of compactification of the additional 

curved mathematical dimensions in the Algebra of signature, the averaging of 

metric 4-spaces with the same signature is performed. 

For example, for the metrics with signature (– + – +)  (see Fig. 4.2), we have 

the following averaged metric tensor 
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where p corresponds to the 14-th signature (– + – +), according to the following 

conditional numbering of signatures: 

               
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )161284

151173

141062

13951

)(

−−−−−−+−−+−+−+−−

++−+−−−+−−+++−−+

+−+−++−−+++−+−−−

+−++−++−−+++++++

=р
ijсsign

           (7.27)    

and the average interval (i.e., metric)               

                                            <ds(– + – +) 2> = сij
(14)dxi

 dxj.                                 (7.28) 

Similarly, because of the 16-fold degeneracy of the 256 intervals (7.18) of 

the curved metric 4-spaces, we can obtain 256/16 = 16 averaged intervals (i.e., 

metric) with 16-th possible signatures 

          <ds(+– – –)2>      <ds(+ + + +)2>      <ds(– – – +)2>      <ds(+ –  – +)2 >        (7.29) 

          <ds(– – + –)2>     <ds(+ + – –)2>       <ds(– + – –)2>       <ds(+ –  + –)2>      

          <ds(– + + +)2>       <ds(– – – – )2>     <ds(+ + +  –)2>        <ds (– + + –)2>   

          <ds(+ + – +)2>       <ds(– – + +)2>       <ds(+ – + +)2>      <ds(– +  – +)2>,    

where ‹·› - means averaging. 
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If the additive superposition of all these 16 averaged intervals (7.29) is equal 

to zero 
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dxdxсdxdxсdxdxсdxdxсdxdxсds

      (7.30) 

then this Expression can be used in stochastic light-geometry for an averaged flat 

m,n-vacuum, since it is a condition for observing of the m,n-vacuum balance. 

In this case, the all 16×16 = 256 components of the 16 averaged metric ten-

sors сij
(p) can be random functions of time. But, according to the m,n-vacuum con-

dition, these metric-dynamic fluctuations should overflow into each other in such 

a way that the total metric (7.30), on average, remains equal to the zero. 

On the basis of the total interval (i.e., metric) (7.30) the m,n-vacuum ther-

modynamics can be developed, considering the most complex, near-zero "over-

flows" of the local m,n-vacuum curvatures. The concept of the m,n-vacuum en-

tropy and temperature (as the essence of the chaos and intensity of a local m,n-

vacuum fluctuations) can be introduced.  

We can talk about: cooling of the m,n-vacuum to "freezing": heating of the 

m,n-vacuum to "evaporation"; and many other effects similar to the processes 

occurring in ordinary (atomistic) continuous media. 

The features of the m,n-vacuum thermodynamics are associated with pro-

cesses when the gradients of the m,n-vacuum fluctuations approach the speed of 

light (dсij
(p)/dxa ~ c), or to zero  (dсij

(p)/dxa ~ 0).  

More detailed consideration of the m,n-vacuum thermodynamics is beyond 

the scope of this article. However, some aspects of this direction of the research 

are considered in [15].  
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7.4.1 The connection with Jewish beliefs 

In Judaism, the Name of the ALMOST ה-ו-ה  instead of the Hebrew letters the)  י-

transliteration H V H I is used) Reveals in the form of the “Tree of Life” (i.e., 

“The Tree of Sephiroth”) [12]                                                                      (7.30a) 
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The components of this matrix correspond to the 10 Sefiros (Qualities) of 

the “Etz Chaim” (The Tree of Life): 

                                                                    

 

 

 

 

 

 

 

 

 

 

where Sephirah Tiphereth * consists of six dual Sephirot: 

 
                            Chesed  (IV = VI)      Gvura (IH = HI)     Tiphereth (IH = HI)                               

                           Netzach (VH=HV)     Hod (VH = VH)    Yesod  (HH = HH)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name letter 

ה-ו-ה  י -

Matrix Component  Sephirah  

i  

edge of the 

Letter Yud 

II Kether 

I HH Hochmah 

H VV Binah 

V IV, IH, IH, VH, VH, HH 

VI, HI, HI, HV, HV, HH 

Tiphereth * 

H HH Malkuth 
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Matrix (7.30a) can be written as the sum of two matrices 
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 (7.30b) 

In turn, similarly, the signature matrix (7.27) is the result of raising to the 

second Kronecker power of the two-row matrix 
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This matrix can also be represented as the sum of the diagonal and anti-

symmetric matrices                                                                                        (7.30c) 
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Comparing the matrices (7.30b) and (7.30c), we find that the signatures re-

flect the characteristic properties of the corresponding Sephiroth [12] 
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7.5 The second stage of the compactification of a curved dimensions 

Just as it was done in § 4.7, Expression (7.30) can be reduced to two terms 

               ‹ds(–)2› + ‹ds(+)2› = ‹gij
(+)›dxidxj  + ‹gij

(–)›dxidxj = 0,                  (7.31) 

where                  

                            ( ) ( ) ( )

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7

17

1
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jiр

ij
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ij

ji

ij dxdxсdxdxgdxdxg                       (7.32) 

is the quadratic form (i.e., metric), which is the result of averaging of the seven 

metrics (7.29) with signatures included in the numerator of the left-hand rank 

(4.32) or (7.34) 

                             
( ) ( ) ( )

=

+++−+ ==
14

87

1

р

jiр

ij

ji

ij

ji

ij dxdxсdxdxgdxdxg               (7.33) 

is the quadratic form (i.e., metric), which is the result of averaging of the seven 

metrics (7.29) with signatures included in the numerator of the right-hand rank 

(4.32) or (7.34)   

                                                                                                                                                                                                                                                                                                                                                                     

  

 

 

 

 

 

 

Thus, from the entire set of the m,n-vacuum fluctuations, we can distin-

guish: 

- averaged "outer" side 23-m,n-vacuum (i.e., averaged subcont) with the av-

erage metric 

 

 

 (+   +   +   +) 

 (–   –   –   + ) 
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+ 
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(–  –   –   – )   = 0 

(+  +   +  – )   = 0 

(–  +   +  – )   = 0 

(+  +   –   +)   = 0 

(–   –   +  +)   = 0 

(+  –    +  +)   = 0 

(–   +   –  +)   = 0 

(–   +   +  +)+  = 0 

   (7.34) 
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              ds(+ – – –)2 = ds(–)2 = gij
(–)dxidxj  with signature (+ – – –),                 (7.35) 

where                             ; 
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           (7.36) 

- averaged "inner" side 23-m,n-vacuum (i.e., averaged antisubcont) with the 

average metric 

                   ds(– + + +)2 = ds(+)2 = gij
(+)dxidxj  with signature (– + + +),             (7.37) 

where                               
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To shorten the notation, the averaging signs in the metrics (7.35) – (7.38) 

are omitted. 

In Figure 7.2 conditionally shows the averaged section of a two-sided           

23-m,n-vacuum, the outer side of which (i.e., subcont) is described by the metric 

ds(+ – – –)2 (7.35), and the inner side (i.e., antisubcont) is described by the metric 

ds(– + + +)2 (7.37). 

 

                  

 

 

 

 

 

 

 

 

Fig. 7.2 The simplified illustration of a section of two-sided of a 23-mn-vacuum, the outer side 

(i.e., subcont) of which is described by the metric ds(+ – – –)2, and the inner side (i.e., antisubcont) is 

described by the metric ds(– + + +)2, for ε → 0 

4-dimensional outer side 

23-m,n-vacuum (i.e., antisubcont) 

ds(– + + +)2 = gij
(+)dxidxj , 

with the signature (– + + +) 

    

 

4-dimensional outer side 

23-m,n-vacuum (i.e., subcont) 

ds(+ – – –)2 = gij
(–)dxidxj

 , 

with the signature (+ – – –)  
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=8 THE COMPONENTS OF THE METRIC TENSOR 

8.1 The 4-strains tensor of a 23-m,n-vacuum 

Let the initial non-curved metric-dynamic state of the investigated area of the out-

er side of the 23-m,n-vacuum (i.e., the averaged subcont) be characterized by the 

averaged metric 

                       ds0
(–)2 = gij0

(–)dxi
 dxj   with signature (+ – – –),                (8.1)  

and the curved state of the same area of the subcont is given by the averaged met-

ric 

                       ds(–)2 = gij
(–)dxidxj with the same signature (+ - - -).                 (8.2) 

The difference between the curved state of the investigated area of the sub-

cont and its non-curved state is determined by the Expression (7.23) 

                  ds(–)2 – ds0
(–)2 = (gij

(–) – gij0
(–)) dxidxj  = 2ij

(–)dxidxj ,            (8.3)                                     

where 

                                       ij
(–) =  ½ (gij

(–) – gij0
(–))                                   (8.4)     

is the 4-strains tensor of the local area of the subcont. 

The relative elongation of the curved area of the subcont is [6] 

                              1
)(0

)(

)(0

)(0)(

)( −=
−

=
−

−

−

−−

−

ds

ds

ds

dsds
l .                            (8.5)  

Where does it follow 

                                          ds(–)2 = (1 + l(–))2ds0
(–)2.                                (8.6)  

Substituting (8.6) into (8.3) and taking into account (8.4), we have [6] 

                                    ij
(–) = ½ [(1 + l(–))2 – 1] gij0

(–),                           (8.7)  

or in the expanded form 

                ij
(–) = ½ [(1 + li

(–))(1 + lj
(–)) cosij

(–) – cosij0
(–)] gij0

(–),         (8.8)  

where 

ij0
(–) is the angle between the axes xi and xj of the frame of reference "frozen 

in" in the initial non-curved state of the investigated area of the subcont; 

ij
(–) is the angle between the axes xi and xj of the distorted frame of refer-

ence "frozen in" into the curved state of the same area of the subcont. 
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For ij0
(–) = /2, the Expression (8.8) takes the form 

                        ij
(–) = ½ [(1 + li

(–))(1 + lj
(–)) cosij

(–) – 1] gij0
(–).             (8.9)    

For the diagonal components of the 4-strain tensor ii
(–), the Expression (8.9) 

is simplified 

                                ii 
(–) = ½ [(1 + li

(–))2 – 1] gii0
(–),                             (8.10)    

whence it follows [6] 

            .1111
2

1
)(0

)(

)(0

)(0)(

)(0

)(
)( −=−

−
+=−+=

−

−

−

−−

−

−
−

ii

ii

ii

iiii

ii

ii
i

g

g

g

gg

g
l


        (8.11)   

If the deformations ij
(–) are small, then, the expanding Expression (8.11) in 

a series, and limiting ourselves to the first term of this series, we obtain the rela-

tive elongation of the local area of the subcont 

                                               
)(0

)(
)(

−

−
− 

ii

ii
i

g
l


.                                              (8.12)   

Similarly, the deformation of the local area of the inner side of the                 

23-m,n-vacuum length (i.e., averaged antisubcont) is determined by the Expres-

sion 

                 ds(+)2 – ds0
(+)2 = (gij

(+) – gij0
(+))dxidx j = 2ij

(+)dxidx j,            (8.13)  

where  

                                ij
(+) = ½ (gij

(+) – gij0
(+))                                           (8.14)   

is the 4-strains tensor of the local area of the antisubcont; 

                        ds0
(+)2 = gij0

(+)dxidxj   with the signature (– + + +)                   (8.15)   

is the metric of the non-curved state of the local area of the antisubcont; 

           ds (+)2 = gij
(+)dxidxj  with the same signature (– + + +)                (8.16)  

is the metric of the curved state of the local area of the antisubcont. 

The relative elongation of the local area of the antisubcont is determined by 

the Expression 
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ds

ds

ds

dsds
l                            (8.17)  

Let’s define the 4-strains tensor of the two-sided 23-m,n-vacuum as the 

mean  

                    ij
(±) = ½ (ij

(+) + ij
(–)) = ½ (ij

(– + + +) + ij
(+ – – –)),                (8.18)    

or, taking into account (8.4) and (8.14), we obtain 

         ij
(±) =  ½ (gij

(+) + gij
(–)) – ½ (gij0

(+)  + gij0
(–)) = ½ (gij

(+) + gij
(–)),      (8.19)  

since according to the m,n-vacuum balance condition: 

                            gij0
(+) + gij0

(–) = gij0
(– + + +) + gij0

(+ – – –) = 0.   

The relative lengthening of the local area of the two-sided 23-m,n-vacuum 

li
(±) in this case should be calculated using the formula [15] 
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                      (8.21) 

Since in any case one of the components gij0
(–) or gij0

(+) is a negative number, 

the relative lengthening (8.20) may turn out to be a complex number. 

In this regard, we note the following the important circumstance. If both 

sides of the Expression (8.19) are multiplied by dxidxj, then we obtain the aver-

aged quadratic form [15] 

                                     ds(±)2 = 
2

1 (ds(–)2+ ds(+)2),                                   (8.22) 

which resembles the Pythagorean theorem c2 = a2 + b2. 

This means that the line segments ( 2
1 )1/2ds(–) and ( 2

1 )1/2ds(+) are always mu-

tually perpendicular to each other, i.e. ds (–)
⊥ ds (+)  (see Fig.8.1a). In this case, two 



  84                                                                                                                                  M. Batanov-Gaukhman 

_______________________________________________________________________________ 

 

 

lines directed in the same direction can always be mutually perpendicular only if 

they form a double helix (see Fig. 8.1b). 

                    

 

 

 

    

 

 

                              a)                                                             b) 

Fig. 8.1 a) The ratio of the segments ds(–) and  ds(+);  b) If project the double helix onto a plane, 

then at the intersection the its segments ds(–) and  ds(+) are always mutually perpendicular 

 

Thus, the averaged metric (8.22) corresponds to a segment of the "braid" 

(i.e., the double helix) consisting of two mutually perpendicular spirals s(–) and s
(+). 

In this case, just like the averaged relative elongation (8.20), the segment of this 

"double helix" can be described by a complex number [15] 

                                     ds (±)= 2
1

(ds (–)+ids (+)),                                                  (8.23)   

the square of the modulus of this Expression is (8.22). 

Definition 8.1.1 A k-braid is the result of averaging the metrics with 

different signatures (where k is the number of averaged metrics, i.e. the 

number of “threads” in the “braid”).  

In particular, the averaged metric (8.22) is called the 2-braid, since it is 

“twisted” from the 2 lines (i.e., “threads”):  

                           ds(−) = ds(+ − − −) 
 and  ds(−) = ds(− + + +) .  

At the next deeper 16-sided level of consideration, the metric-dynamic 

properties of the local area of the 26-m,n-vacuum are characterized by an additive 

superposition (or averaging) of sixteen metrics with the all 16 possible signatures, 

i.e. a 16-braid [15]: 
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     ds
2 = 1/16 (ds(+ – – –)2 + ds(+ + + +)2 + ds(– – – +)2 + ds(+ – – +)2  +  

 

                     + ds(– – + –)2  + ds(+ + – –)2  + ds(– + – –)2  + ds(+ – + –)2 +            (8.24)  

              

                    + ds(– + + +)2 + ds(– – – – )2 + ds(+ + + –)2 + ds(– + + –)2 + 

 

                    + ds(+ + – +)2  + ds(– – + +)2  + ds(+ – + +)2  +  ds(– + – +)2) = 0. 

 

  In this case, we have sixteen of the 4-strains tensors of all kinds of the       

4-spaces  

                          





















=

)16()15()14()13(

)12()11()10()9(

)8()7()6()5(

)4()3()2()1(

)(

ijijijij

ijijijij

ijijijij

ijijijij

p

ij









 ,                           (8.25)  

where                                 

                                                 ij
(p) =  ½ (сij

(p)  – сij0
(p))                                  (8.26)    

is the 4-strains tensor of the p-th metric 4-space;  

cij0 
(p) – the metric tensor of the uncurved local area of the p-th 4-space;     

cij 
(p)  – the metric tensor of the same, but a curved local area of the p-th 4-space.  

At the 16-sided level of consideration, the total 4-strains tensor ij(16)  of the 

local area of the 26-m,n-vacuum is equal to 

     ij(16)
 = 1/16 (ij
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(16)),                (8.27)  

and the relative elongation of the local area of the 26-m,n-vacuum in this case can 

be calculated by the formula  

                  li
 
(16)

 = η1 li
 (1) +  η2 li

 (2) +  η3 li
 (3) +…+ η4 li

 (16),   

where                                                              
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2

1
)(0

)(
)( −+=

p

ii

p

iip

i
c

l


.                                    (8.29) 

where ηm (where m = 1,2,3, ..., 16) is the orthonormal basis of objects satisfying 

the anticommutation relation of the Clifford algebra 
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                                         ηmηn + ηnηm = 2δmn ,                                      (8.30)   

where δnm is the unit 1616-matrix. 

In this case, the segment of the 16-braid consists of 16 "threads" [15]: 

 ds 
(16)

 = η1 ds(+– – –)   +  η2 ds(+ + + +)   +  η3 ds(– – – +) + η4 ds(+ –  – +)  +   

     

          + η5 ds(– – + –)  + η6 ds(+ + – –)   +  η7 ds(– + – –)  + η8 ds(+ –  + –)  +       (8.31) 

               

          + η9 ds(– + + +) + η10
  ds(– – – –) + η11 ds(+ + +  –) + η12 ds (– + + –) + 

                     

          + η13 ds(+ + – +) + η14
  ds(– – + +) + η15 ds(+ – + +) + η16 ds(– +  – +) = 0.    

 

If the all 16 linear forms ds(+– – –),  ds(+ + + +), … , ds(– +  – +) can be represented 

in diagonal form, then in accordance with (5.12) and (5.13) the Expression (8.31) 

can be represented in the spin-tensor form 
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Within the framework of the Algebra of signature, it is possible much more 

deeper 2n-sided levels of the consideration of the metric-dynamic properties of the 

curved region of a m,n-vacuum, with an increase in the number of a components 

of the metric tensors to infinity (see Fig. 8.2). 

 

9 THE KINEMATICS OF THE VACUUM LAYERS 

9.1 The kinematics of a m,n-vacuum layers 

Under the kinematics of a vacuum layers is meant such a section of the light-

geometry of the vacuum, in which the displacements (or movements) of the dif-

ferent sides of the m,n-vacuum are considered independently of their defor-

mations. 

With a more consistent approach, performed in [15], it turns out that any 

displacements (or movements) of the local area of each layer of the m,n-vacuum 

are inevitably accompanied by its deformation, and vice versa, the deformation of 

the local area of the any layer of the m,n-vacuum necessarily accompanied by its 

displacement (or flow). 
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Interconnected flows and deformations (i.e., 4-deformations) of the local ar-

ea of the m,n-vacuum are considered in the Section "Dynamics of the m,n - vacu-

um layers" in [15]. 

In this article, we consider only the kinematic models of the behavior of the 

m,n-vacuum layers. These models, despite the above disadvantages, allow theo-

retically predicting a number of the previously unknown vacuum effects that can 

be tested in practice. 

 

9.2 The nonzero components of the metric tensor 

Let the metric-dynamic states of the two 4-dimensional sides of the 23-m,n-

vacuum local area be given by the intervals (7.35) and (7.37) (see Fig. 7.2). Then 

the nonzero components of the metric tensors (7.36) and (7.38) 
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                 (9.1)       

determine the local curvature of the 3-dimensional cell of the m,n-vacuum. Here 

the indices of the Greek alphabet α, β correspond to 3-dimensional consideration 

(i.e., α, β = 1,2,3). 

The scalar curvature of a 3-dimensional m,n-vacuum cell in a two-sided 

consideration within the framework of the Algebra of signatures is determined by 

the averaged Expression [15] 

                                       R(±) = 
2

1 (R(–)+R(+)) ,                                      (9.2) 

where the scalar curvature of each of the two sides is determined in the same way 

as in general relativity 

                                  R(–) = g(–)αβRαβ
(–)    и     R(+) = g(+)αβRαβ

(+),                      (9.3) 

where 
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is the Ricci tensor of the outer (–), or inner (+) "side" of the m,n-vacuum local 

area; 
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(9.5)   

is the Christoffel symbols of the outer (–), or inner (+) side of the m,n-vacuum 

local area, where gαβ is, respectively, g(–)αβ  or  g(+)αβ. 

The 3-strain tensor of a 3-dimensional cell of the m,n-vacuum in this case is 

given by the averaged Expression [15]   

                                    αβ
 (±) = ½ (αβ

 (+) +  αβ
 (–)),                                 (9.6) 

where                                        

                                            αβ 
(–) = ½ (gαβ

(–) – g αβ0
(–))                                   (9.7)  

is 3-strains tensor of the outer side of the m,n-vacuum cell; 

                                            αβ 
(+) = ½ (gαβ

(+) – g αβ0
(+))                                   (9.8) 

is 3-strains tensor of the inner side of the same m,n-vacuum cell. 

The theory of the deformation of the m,n-vacuum local 3-dimensional re-

gion can be developed by analogy with the theory of elasticity of the conventional 

(atomistic) continuous elastic-plastic media [6], taking into account the two-sided 

(or 2n-side) consideration. 

 

9.3 The zero components of the metric tensor 

To clarify the physical meaning of the zero components of the metric tensors 

(7.36) and (7.38) 
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let’s use the kinematics of two-sided of a 23-m,n-vacuum. 

Let the initial (stationary and non-curved) state of the 23-m,n-vacuum be 

given by a set of pseudo-Euclidean metrics (4.33) and (4.35)                                                                                                              

ds0
(–)2= с2dt2– dх2– dy 2– dz 2 =  ds(–)ds(–) =  сdtсdt– dxdx– dydy– dz dz,     

     ds0
(+)2=– с2dt2+dx2+dy 2+dz2= ds(+)ds(+) = – сdtсdt+dxdx+dydy+dz dz,     

where                                                                                                               (9.10)         

  ds(–) =   с dt + idx+ jdy+ kdz       is a mask of the subcont;              (9.11)         

  ds(–) =   с dt+ idx+ jdy+ kdz   is an interior of the subcont          (9.12)         

  ds(+) = – с dt+ idx+ jdy+ kdz       is a mask of the antisubcont;        (9.13)         

  ds(+) =   с dt– idx– jdy– kdz    is an interior of the antisubcont,   (9.14)    

this is affine aggregates, in particular, quaternions with the multiplication Table of 

imaginary units, for example,[9]  

                                                                                                               Table 9.1 

 

 

 

 

 

Let’s consider the four kinematic cases: 

1) Let in the first case the mask and the interior sides of the outer and inner 

sides of the 23-m,n-vacuum move relative to the initial stationary state along the 

x-axis with the same velocity vx, but in different directions. This is formally de-

scribed by the transformation of a coordinates [3, 4]: 

         t = t,     x = x + vx t,     y=  y,     z= z    – for a mask;                 (9.15)         

        t= t,     x = x – vxt,     y= y,     z= z    – for an interior.            (9.16)    

The equality of the moduli of the velocities vx of the mask and the interior 

sides is due to the m,n-vacuum balance condition, which requires that an adequate 

anti-motion corresponds to each movement in the m,n-vacuum. 

Differentiating (9.15) and (9.16), and substituting the results of differentia-

 i j k 

i –1 k –j 

j –k –1 i 

k j –i –1 
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tion into metrics (9.10), we obtain the set of the metrics 

                      ds(–)2=   (1+ vx
2/с2)c2dt2– dx2 – dy2 – dz2;                        (9.17)          

                      ds(+)2= – (1+ vx
2/с2)c2dt2+ dx2+ dy2+dz2 ,                        (9.18)   

describing the kinematics of the joint movement of the outer side (i.e., subcont) 

and the inner side (i.e., antisubcont) of the 23-m,n-vacuum, subject to the condi-

tion 

                                            ds(–)2 + ds(+)2 = 0.  

The zero components of the metric tensors (9.9) in this case are equal to 
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i              (9.19)              

2) In the second case, let the mask and the interior sides of the subcont and 

antisubcont move relative to their initial stationary state in the same direction – 

along the x-axis with the same velocity vx. This is formally described by transfor-

mations of the coordinates [3, 4]: 

           t= t,     x = x – vx t,     y=  y,     z= z     – for a mask;                (9.20)         

           t= t,     x = x – vxt,     y= y,    z= z    – for an interior.          (9.21)  

Differentiating (9.20) and (9.21) and substituting the results of the differen-

tiation into the metrics (9.10), we obtain the set of metrics:       

       ds(–)2 =    (1– vx
2/с2)c2dt2 + vxdxdt + vxdtdx – dx2 – dy2– dz2,          (9.22) 

       ds(+)2 = – (1– vx
2/с2)c2dt2 – vxdxdt – vxdxdt + dx2+ dy2+ dz2.           (9.23)   

In this case, the m,n-vacuum balance condition is also met, since                                              

                                          ds(–)2 + ds(+)2 = 0,  

but additional cross terms vxdxdt appear. 

The zero components of the metric tensors (9.9) in the second case are 
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3) Let the mask and the interior sides of the subcont and the antisubcont 

(i.e., the outer and inner sides of the 23-m,n-vacuum) rotate around the z-axis in 

the same direction with an angular velocity . This is described by changing vari-

ables: 

      t = t,   x = x cos t – y sin t,   z = z,   y= x sin t + y cos t,        (9.25) 

      t = t,   x = x cos t – y sin t,   z = z,   y = x sin t + y cos t.    

Differentiating (9.25) and substituting the results of the differentiation into 

the metrics (9.10), we obtain the set of the metrics:                                         

    ds(–)2= [1– ( 2 /с2)(х2 +у2)]с2dt2+2 уdxdt –2 хdydt – dx2– dy2– dz2,   (9.26) 

    ds(–)2= – [1– ( 2/с2)(х2+у2)]с2dt2–2 уdxdt+2 хdydt+dx2+dy2+dz2.   

In the cylindrical coordinates 

               2= х2+ у2,    z = z ,    t = t ,    = arctg(y/x) –  t.               (9.27) 

the metrics (9.26) take the form                                                                     (9.28) 

    ds(–)2=  (1 –  2 2/с2) с2dt2 –  2 /с ddt –  2 /с dtd – d 2 –  2d 2– dz2,                    

    ds(+)2 = – (1 –  2 2/с2) с2dt2 + 2 /сddt + 2 /сdtd + d 2 + 2d 2+ dz2.           

In this case the m,n-vacuum balance condition is observed ds(–)2 + ds(+)2 = 0, 

and the zero components of the metric tensors (9.9) are 
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     (9.29)  

4) The case can also be considered when the mask and  the interior sides of 

the subcont and the antisubcont rotate in mutually opposite directions with an an-

gular velocity . This is described by changing variables: 
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  t = t,     x = x cos t – y sin t,      z = z,    y =   x sin t + y cos ,      (9.30) 

  t= t,     x = – x cos t + y sin t,   z= z,   y = – x sin t – y cos t.   (9.31) 

and leads to similar results. 

It can be seen from the considered kinematic examples that the zero compo-

nents of the metric tensor (9.9) are associated with the translational and/or rota-

tional motion of various 23-m,n-vacuum layers. 

The state of motion of the local 3-dimensional area of a 23-m,n-vacuum is 

characterized by averaged zero components of the metric tensor 

                                         ( ) .)(

0

)(

02
1)(

0

−+ += iii ggg                                      (9.32)    

In all four considered cases, the averaged zero components of the metric 

tensor (9.32) are equal to zero ( ) 0)(

0

)(

02
1)(

0 =+= −+

iii ggg . This means that inside the 

local 3-dimensional area m,n-vacuum, mutually opposite intravacuum processes 

can occur, but, on the whole, this area remains motionless. 

Nevertheless, there are cases when intravacuum processes due to phase 

shifts can compensate each other not locally, but globally. In this case, the local   

3-dimensional area of the m,n-vacuum can participate (as a whole) in the some 

intricate closed motion. Let's consider such a case with a specific example. 

Let in some local area of the m,n-vacuum the kinematics of intravacuum 

processes be such that 

  t = t,    x = x + v1x t,   y=  y,   z= z   – for a mask of the subcont;               (9.33)    

  t= t,    x = x – v2xt,   y= y,   z= z  – for an interior of the subcont;          (9.34)                             

  t = t,    x = x + v3x t,   y = y,   z= z   – for a mask of the antisubcont;         (9.35)    

  t= t,    x = x – v4xt,   y= y,   z= z  – for an interior of the antisubcont,    (9.36)    

where v1x ≠ v2x ≠ v3x ≠ v4x, but the overall balance of movement is observed 

                                    v1x – v2x + v3x – v4x = 0.                                       (9.37)    

In this case, the outer and the inner sides of the 23-m,n-vacuum (i.e., the 

subcont and the antisubcont) are described by a set of metrics 
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ds(–)2=   (1+ v1x
 v2x/с

2)c2dt2 – v1xdtdx + v2xdxdt– dx2 – dy2 – dz2;           (9.38)    

ds(+)2= – (1+ v3x
 v4x/с

2)c2dt2 + v3xdtdx – v4xdxdt + dx2 + dy2 + dz2.        (9.39)     

in this case, the averaged zero components of the metric tensor (9.32) are 

   g00
 (±) = (v1x

 v2x – v3x
 v4x)/2с2,  g01

 (±) = (v3x – v1x)/2,   g10
 (±) = (v2x – v4x)/2     (9.40)    

                                       for  (v1x + v3x) – (v2x + v4x) = 0.                                 (9.41)    

This means that the considered 3-dimensional local area of the m,n-vacuum 

participates in an intricate motion along the x-axis with the formal observance of 

the m,n-vacuum balance condition with respect to the total momentum (9.37).  

The technical capabilities to create and control of the intra-vacuum flows 

are considered in Sections P14.6 – P14.7 in [15]. 

 

9.4 The limiting velocity of movement of the m.n-vacuum layers  

Let’s consider the metric (9.22) 

              ds(–)2 = (1– vx
2/с2)c2dt2 + 2vxdxdt – dx2 – dy2– dz2.                  (9.42)    

We select in Expression (9.42) a complete square      
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 (9.43)    

and introduce the notation 
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In this notation, the metric (9.42) takes the form 

                           
222222)( zdydxdtdcds −−−=−

.                           (9.45) 
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If an area of one of the 23-m,n-vacuum sides moves as a whole with a veloc-

ity vx [see Expressions (9.20) – (9.23)], then for an outside stationary observer, a 

direct ray of light will propagate with a speed 
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xx
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(9.46) 

This is similar to how a stationary observer measures the speed of waves 

propagating along the moving surface of a river. Such an observer will find that 

the speed of propagation of the wave disturbances depends on the speed of the 

river flow, while relative to the water itself, the speed of the wave propagation 

remains unchanged, and depends only on the properties of the water itself (its 

density, temperature, impurities, etc.). 

From Expressions (9.46) it follows that in the case of (9.20) – (9.23) the ve-

locity of propagation of the outer side of the 23-m,n-vacuum (i.e., subcont) cannot 

exceed the speed of light c. At low velocity (i.e., when vx << c) for an outside ob-

server, the speed c' turns out to be somewhat less than the speed of light  

                                               .'
cdt

xv
сс x−=  

Thus, for the case (9.20) – (9.23), the conclusions the Algebra of signature 

and special theory of relativity coincide, i.e., the main physical conclusions re-

main the same. 

However, for the case (9.15) – (9.18), the situation is different. Let’s con-

sider this version of intra-vacuum processes using the example of the motion of a 

subcont described by the metric (9.17) 

                        ds(–)2 = (1+ vx
2/с2)c2dt2– dx2 – dy2 – dz2.                        (9.47)   

In this case, the introduction of the notation 

                   ,1'
2

2

c

v
сс x+=   .,,,' zzyyxxtt ====                  (9.48)                            
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transform the metric (9.47) to the metric (9.45), but there are no restrictions on the 

oncoming velocities vx of the mask and the interior sides of the subcont. This cir-

cumstance requires a separate detailed consideration, since it allows the possibil-

ity of organizing the superluminal intra-vacuum communication channels. 

                    

9.5 The Inert properties of layers of a m,n-vacuum 

Let's return to the consideration of metrics (9.10) 

                    ds(+ – – –)2 = ds(–)2 =    c2dt2 – dx2 – dy2 – dz2 ,                     (9.49) 

                    ds(– + + +)2 = ds(+)2 = – c2dt2 + dx2 + dy2 + dz2 .                    (9.50)       

We take the value с2dt2 in the right parts of these metrics out of brackets 
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 (9.51)
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  (9.52)
 

where v = (dx2 +dy2 +dz2)1/2/dt = dl/dt is 3-dimensional velocity. 

Let’s extract the root from the two sides of the resulting Expressions (9.51) 

and (9.52). As a result, according to the notation (9.11) – (9.14), we get 
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– for a mask of the subcont;                          (9.53)
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 – for an interior of the subcont;                    (9.54) 
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2
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v
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– for a mask of the antisubcont;                   (9.55) 

      
2

2
)( 1'

c

v
icdtds −−=+

 – for an interior of the antisubcont.              (9.56) 

For example, consider the 4-dimensional velocity vector of the subcont 

mask                                           

                                            ui
(–) = dxi /ds(–)’.                                         (9.57) 

Substituting (9.53) in (9.57), we get the components of the 4-velocity [3] 
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Let the mask sides of the subcont move only in the direction of the x-axis, 

then its 4-velocity has components 
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Let’s now define the 4-acceleration of the subcont mask [3, 4] 
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and consider only its x-component 
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where the value 
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has the dimension of the x-component of the 3-dimensional acceleration. 

On the left-hand side of the Expression (9.62), we perform the differentia-

tion operation [4] 
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and introduce the notation 

                                                      dvx/dt = аx
(–)'.                                            (9.64) 

In this case, the Expression (9.63) takes the form 

                          '

11

1 )(

2

3

2

2
2

2

2

2

)( −−































−

+

−

= x

x

x

x

x a

c

v
c

v

c

v
a ,                         (9.65) 

where ax
(–) is the actual acceleration of the area of the subcont mask, taking into 

account its inert properties; 

           аx
(–)' is ideal acceleration of the same area of the subcont mask. 

We represent the Expression (9.65) in the following form 

                                          ')()()( −−− = xxx aa  ,                                           (9.66) 

where   
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is the dimensionless coefficient of an inertia, linking the actual and ideal accelera-

tions of the studied local area of the subcont mask, and showing how the inertia 

(i.e., resistance) of this area changes when the velocity of its movement changes. 

From the Expression (9.67) it follows that if vх = 0, then the inertia coeffi-

cient х
(–)

 = 1 and ')()( −− = xx aa . This means that the area of the subcont mask does 
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not resist the beginning of its movement. 

When the velocity vх approaches the speed of light c the inertia coefficient 

х
(–) tends to infinity, while further acceleration of the subcont mask becomes im-

possible. 

The Expression (9.66) is a massless analogue of Newton's second law 

                                                Fx = max,                                              (9.68) 

where Fx is the component of the force vector; m is mass of the body; ax is a 

component of its ideal acceleration. 

Comparing the Expressions (9.66) and (9.68), we find that in m,n-vacuum 

dynamics, the massless coefficient of inertia х
(–) of the local area of the subcont 

mask is analogous to the density of the inert mass of a continuous medium in the 

post-Newtonian physics. 

By successive substitution of intervals (9.54) – (9.56) into Expression 

(9.57), we can get the inertia coefficients х
(–), х

(+), х
(+)  for the other three 

affine layers of the 23-m,n-vacuum.  

The general coefficient of inertia of the local area of a 23-m,n -vacuum is a 

function of all four coefficients of inertia 

                             х
(±) = f (х

(–) , х
(–), х

(+), х
(+) )                        (9.69)    

An explicit form of this function can be obtained by describing the 23-m,n -

vacuum dynamics (see [15]). 

 

9.6 The kinematics of rupture of the local area of the "vacuum" 

The vacuum light-geometry opens up opportunities for the development of "zero" 

(i.e., vacuum) technologies. The mathematical apparatus of the Algebra of signa-

tures makes it possible to predict a number of a vacuum effects that, in principle, 

cannot be predicted by modern "one-sided" physics. 

It will be possible to talk about "zero" technologies in more detail after the 

presentation of a m,n -vacuum dynamics (see [15]). 
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In this article, we will consider only the kinematic aspects of the possibility 

of "rupture" the local area of the m,n-vacuum. 

Let's integrate the Expression (9.62) [4]: 
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Integrating Expression (9.70) once again, and assuming x0 = 0 at t = 0, we 

obtain the following change in the length of the subcont mask along the x-axis at 

its accelerated movement [4]: 
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Let the initial (i.e. stationary) state of the local area of the subcont be given 

by the metric (9.49) 

                            
222222)( zdydxdtdcds −−−=−

.                            (9.71) 

The uniformly accelerated motion of a given area of the subcont along the   

x-axis is formally specified by the transformation of coordinates [4]: 
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Differentiating coordinates (9.72), and substituting the results of differentia-

tion in metric (9.71), we obtain the metric [4] 
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describing the uniformly accelerated motion of the local area of the subcont (i.e., 

the outer side of the 23-m,n-vacuum) in the direction of the x-axis. 

If an additional flow with negative acceleration created in the same area of 

the subcont   
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then, performing mathematical calculations similar to (9.70) – (9.73), we obtain 

the metric 
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In this case, the average metric-dynamic state of the subcont local area will 

be characterized by the averaged metric 
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        (9.76) 

with signature (+ – – –).  

Whence we see that for 

                     ,1
4

44

=
c

taх
   or    |ах|t = c,   or    |ах| = c /t,                     (9.77)   

the first and second terms in the averaged metric (9.76) turn to infinity. This sin-

gularity can be interpreted as a “rupture” of the investigated area of the subcont 

(i.e., the outer side of the 23-m,n-vacuum). 

The "rupture" of a subcont is an incomplete action. For a complete "rupture" 

of the local area of the 23-m,n-vacuum, it is necessary to "rupture" its inner side 

(i.e., antisubcont) described by the metric (9.50) with the signature (– + + +).             

To do this, it is necessary to create similar uniformly accelerated and equally 
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slowed flows in the antisubcont of the same area of the 23-m,n-vacuum, so that its 

average state is determined by the averaged metric [15] 
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     (9.78) 

with a signature (– + + +), which "rupture" under the same conditions 

                       ,1
4

44

=
c

taх  or   |ах|t = c,   or   |ах| = c /t.                          (9.79)    

The averaging metrics (9.76) and (9.78) leads to the fulfillment of the m,n-

vacuum balance condition 

                       0)( 2)(2)(
2

12 =+= −+ dsdsds ,                         (9.80)  

which in this situation is equivalent to Newton's third law: "Action is equal to 

reaction" 

                     Fx
(+) – Fx

(–)  =  max
(+) – max

(–) =  ax
(+) – ax

(–).                     (9.81) 

That is, the process of "rupture" of the m,n-vacuum local area is similar to 

the rupture of an ordinary (atomistic) solid body, to which sufficiently large and 

equal forces, more precisely accelerations, are applied from both sides. 

It is not excluded that the conditions described above for the "rupture" of the 

m,n-vacuum are formed in the collision of the accelerated elementary particles.            

It is possible that a strong collision of particles leads to the emergence of a web of 

vacuum "cracks", while the closed cracks scatter in the form of a many new "par-

ticles" and "antiparticles". 

 

10 CONCLUSION 
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The article proposes a method for studying the local volume of a perfect “vacu-

um” (i.e., an empty space in which there are no particles at all) by probing it with 

light rays directed from the three mutually perpendicular directions. 

As a result of such probing, a 3-dimensional lattice (i.e., a 3D-landscape), 

consisting of the light rays, is formed in a “vacuum” (see Fig. 2.1). This 3- dimen-

sional landscape is called m,n-vacuum, where m,n is the wavelength of the prob-

ing rays taken from the sub-range Δ = 10m  10n  cm. 

There are an infinite number of such m,n-vacuums in the investigated vol-

ume of the "vacuum" depending on the wavelength m,n of probing beams (see 

Fig. 2.2). However, all m,n-vacuums obey the same laws, therefore only one of 

them is studied in detail in the article. 

The analysis of the properties of the m,n-vacuum led to the development of 

the Algebra of signatures. Let's list the main features and differences of this math-

ematical construction from the mathematical apparatus of known theories: 

1. In the theory of elasticity, in the mechanics of continuous media, and in 

the general theory of relativity, only one metric is considered, for example, 

                      ds(+ – – –)2 = gij
(–)dxidxj    с сигнатурой   (+ – – –),            (10.1) 

which determines the metric-dynamic state of the local area of only one side of 

the continuous medium (in particular, the empty space, i.e., "vacuum"), which in a 

number of cases leads to paradoxes. Whereas the Algebra of signatures takes into 

account the totality of 16 different metrics (7.29) 

                            ds(+– – –)2      ds(+ + + +)2       ds(– – – +)2      ds(+ –  – +)2                          (10.2) 

                   ds(– – + –)2      ds(+ + – –)2       ds(– + – –)2       ds(+ –  + –)2                           

                   ds(– + + +)2       ds(– – – – )2     ds(+ + +  –)2        ds (– + + –)2  

                   ds(+ + – +)2       ds(– – + +)2       ds(+ – + +)2      ds(– +  – +)2,    

with 16 corresponding signatures (or topologies) (4.28) that satisfy of the m,n-

vacuum balance condition:                                                                              (10.3) 
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2. From the ranked Expression (10.3), subject to the requirements of the 

m,n-vacuum balance condition, follows the ranked Expression (4.32)  

 

 

 

 

 

 

 

 

 

 

which leads to put forward a hypothesis that the "vacuum" has at least two sides: 

the outer side with the signature of the Minkowski 4-space (+ – – –); and the inner 

side with the opposite signature of the Minkowski 4-antispace (– + + +). 

3. Within the framework of the Algebra of signatures, there are two types of 

the m,n-vacuums (commutative and anticommutative) and two similar types of 

the m,n-antivacuums with the sign multiplication rules (4.11) – (4.18). It is as-

sumed that the joint consideration of the m,n-vacuums and m,n-antivacuums will 

significantly expand the possibilities of the theory. 

4. The multidimensional space of the Algebra of signatures is supersymmet-

ric, since at each point of a given single manifold, both commutative and anti-

commutative operations on sets of numbers are specified. There is a clear analogy 

between the multidimensional, supersymmetric and Ricci planar spaces of the 

Algebra of signatures and the Calabi - Yau manifold. 
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Taking into account the full set of metrics (10.2) makes it possible to outline 

ways to solve a number of problems that previously could not be solved. For ex-

ample, within the framework of geometrized physics of the “vacuum”, developed 

on the basis of the Algebra of signatures, it is possible to propose a theoretical 

basis for the development of "zero" (i.e. vacuum) technologies, such as: "trans-

mission of the information through the superluminal communication channels",            

"compression of the communication channels based on spectral-signature (color) 

Fourier analysis” (see §3.5), “using intravacuum flows for movement in the 

space”, etc. [13,14,15]. 

The formal mathematical apparatus of the Algebra of signatures is a differ-

ential, multisignature, transversely and longitudinally stratified, supersymmetric 

and infinite-dimensional light-geometry, which become more and more compli-

cated as one immerses in infinite deep of the vacuum. But initially, the Algebra of 

signatures provides algorithms for the compactification and/or convolution of the 

many extra dimensions and topological layers to describe the metric-dynamic 

properties of the 3-dimensional volume of the "vacuum". 

Constant observance of the "m,n-vacuum balance condition" allow the Al-

gebra of signatures to avoid the paradoxes.  

According to the author, the formal mathematical apparatus of the Algebra 

of signatures creates a logical platform for planning experiments related to the 

study of "vacuum" effects and performing actions on the "vacuum" as a real ob-

ject of research. 
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12 TERMS AND DEFINITIONS 

New terms and numbers of their definitions are presented in the Table 12.1. 

                                                                                                             Table 12.1 

The Term Number of the Definition  

Perfect vacuum 2.1.1 

"Vacuum" 2.1.1 

m,n-vacuum 2.1.3 

Longitudinal stratification                 

of the "vacuum" 

2.1.4 

Time axis 2.3.1 

Stignature 3.1.1, 3.5.1 

Signature 4.1.1 

Rank 4.1.2 

m,n-vacuum balance condition 4.5.1 

Subcont 4.7.1 

Antisubcont 4.7.1 

Transverse stratification                              

of a "vacuum" 

4.9.1 

Transverse stratification                                

of a m,n-vacuum 

4.9.2 

k-braid 8.1.1 
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