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Annotation: This article is the first part of a scientific project under the general title "Geometrized Vacuum Physics". This 

study is based on two main postulates: 1) independence of the propagation velocity of electromagnetic waves in vacuum from 

their frequency; 2) the constancy of the averaged zero vacuum balance, associated with the assertion that only mutually op-

posite formations are born from vacuum, so that on average they completely compensate for each other's manifestations. In 

this part of the "Geometrized Vacuum Physics" the foundations of the Algebra of Stignatures are laid, which is the mathemat-

ical and logical foundation of the entire project. In the next articles of this project it will be shown that the Algebra of Stigna-

tures can be used for the development of "zero" (vacuum) technologies, algebraic genetics, vacuum cosmology, the vacuum 

standard model of "elementary particles", vacuum gravity and levitation, vacuum energy, ethics and aesthetics and many other 

branches of knowledge. At the end of this article, one of the many possible applications of the Algebra of Stignatures is given, 

in particular, the basics of the stignature-spectral analysis are outlined, with the help of which the possibilities of communi-

cation channels can be significantly expanded. 
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INTRODUCTION 

 

In modern physics, there are [1–8]: technical vacuum (discharged gas); physical vacuum (the lowest energy state of a set of 

scalar, vector, tensor and spinor quantum fields); Einstein vacuum (generally a curved 4-dimensional space-time continuum 

surrounding neutral or charged physical bodies); ideal vacuum (emptiness, i.e. 3-dimensional space, in which any curvature 

and particles are completely absent). 

 

This first part of "Geometrized Vacuum Physics" focuses on the ideal vacuum in order to create a mathematical apparatus 

"Algebra of Stignatures", suitable for the study of vacuum phenomena and the development of "zero" (vacuum) technologies. 

In subsequent articles of this project, a description of curved sections of vacuum and stable vacuum formations is expected. 

 

First, we abstract from all kinds of vacuum processes, and consider the local region of a completely flat empty 3-dimensional 

space (i.e., ideal vacuum). 

 

This work is based on three reliable (experimentally confirmed) facts: 

1) all known electromagnetic waves, regardless of their oscillation frequency, propagate in vacuum with the same speed of 

light c = 299,792,458 m/s (fixed by the resolution of the 26-th General Conference on Weights and Measures, based on 

CODATA data). Despite the possible instability of the properties of emptiness, the postulate of the constancy of the speed of 

light in vacuum is accepted in this work as an initial axiom. At the same time, as will become clear below, the mathematical 

apparatus of the Algebra of Stignatures turned out to be independent of the propagation velocity of perturbations. Therefore, 

the Algebra of Stignatures is universal and applicable to the study of any 3-dimensional medium; 

2) all averaged characteristics of an average flat area of vacuum (momentum, angular momentum, spin, etc.) are equal to zero; 

3) if something is born from vacuum, then it must be in a mutually opposite form (particle - antiparticle, convexity - concavity, 

wave - antiwave, etc.). This property of vacuum is referred to in this work as “averaged zero vacuum balance” or “vacuum 

balance” for short. 

 

The foundations of the Algebra of Stignatures developed in this work are proposed as a universal mathematical apparatus 

suitable for studying not only the properties of vacuum, but also any other liquid, solid and gaseous continuous media in 

which wave disturbances propagate at a constant speed. Also, the Algebra of Stignatures can be useful for philosophical 

rethinking of the knowledge of ancient civilizations and for application in many branches of scientific knowledge, for exam-

ple, in: coding theory, algebraic genetics, vacuum energy, elementary particle physics, etc. 
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MATERIALS AND METHOD 

 

1 Longitudinal stratification of ideal vacuum into m,n-vacuums 

 

Consider a 3-dimensional volume of an ideal vacuum, in which there are no particles and no curvature. In what follows, for 

brevity, the ideal vacuum will be referred to as "vacuum". 

 

Let’s probe this volume of "vacuum" with laser beams from three mutually perpendicular directions, so that the beams form 

a 3-dimensional cubic lattice (Fig. 1a,b). 

 

Rays of light in a vacuum are not visible, but they can be visualized with a finely dispersed sol. Of course, a "vacuum" filled 

with a sol is not a perfect vacuum. Nevertheless, the rays propagate in the “vacuum” itself (i.e., between the particles of the 

sol), while the influence of the sol on the metric-dynamic properties of the macroscopic volume of the “vacuum” in the case 

under consideration can be neglected. In addition, if the sol is removed from this “vacuum” volume, then the rays will still 

remain in it, although they will not be visible. 

   

  

   

 

 

 

 

 

   

 

 

    
 

                                                             а)                                                            б)   

Fig. 1: a) Laser beams of light in vacuum, visualized with a fine sol; b) A 3-dimensional lattice in a "vacuum" consisting of mutually 

perpendicular monochromatic light rays with a wavelength m,n, while the edge length of a given cubic cell is εm,n ~ 102m,n 

 

Let, for example, to probe of "vacuum" are used laser beams of light (i.e. narrowly directed monochromatic electromagnetic 

oscillations) with a wavelength -4,-5, taken from the range of lengths Δ =10–4 10–5 cm. Then we get a 3-dimensional lattice 

consisting of such mutually perpendicular laser beams, with the edge length of one cubic cell ε-4,-5 ~ 100-4,-5 (see Fig.1b). 

This cubic lattice will be called  -4,-5-vacuum (or 3D-4,-5-landscape). 

 

We divide the entire range of electromagnetic (light) wave lengths into a set of subranges Δ =10m  10n cm, where n = m +1 

(m and n are integers). Then, in the same way as shown in Fig. 1, we will probe the studied volume of the "vacuum" with 

monochromatic light rays with wavelengths m,n from all subranges Δ = 10m  10n cm. As a result, we obtain an almost 

infinite number of nested m,n-vacuums (i.e., 3Dm,n-landscapes) with the corresponding lengths of edges of cubic cells                    

εm,n ~ 100m,n (see Fig. 2). 

                  

 
 

Fig. 2: Discrete set of nested m,n-vacuums of the same 

3-dimensional void volume, where m,n > m+1,n+1 > m+2,n+2 >m+3,n+3 … 



The value of the edge of the cubic cell of each m,n-vacuum 

 

 εm,n ~ 102m,n                                                                                                                                                                                                                                                                   (1) 

 

follows from the condition of applicability of geometric optics m,n → 0, i.e. when the thickness of the light beam is much 

smaller than the value of the corresponding cubic cell, while the beam thickness can be neglected. 

 

The question remains open: – “Are there any restrictions on the frequency ω or the wavelength  of the electromagnetic wave, 

both in the direction of their increase, and in the direction of decrease? If the critical values: ωmax = 2πс/max and ωmin = 2πс/min 

exist, these will be very important characteristics of the vacuum. Today, as far as the author knows, the frequency range of 

observed electromagnetic waves extends from 2 Hz to 1020 Hz, while no restrictions on the expansion of this range have been 

experimentally found. 

 

2 Geodesic lines of the curved section m,n-vacuum 

 

Long-term experimental data show that monochromatic light rays in the entire observed wavelength range Δ propagate in 

"vacuum" at the same speed of light c and according to the same laws of electrodynamics. Therefore, if the region of vacuum 

under study is not curved, then all m,n-vacuums (i.e., 3Dm,n-landscapes) will be represented as ideal cubic lattices (see Figs. 

1 and 2), because the geodesic lines of all these non-curved m,n-vacuums are direct rays of light. In this case, m,n-vacuums 

will differ from each other only by the length of the edge of the cubic cell εm,n ~ 102m,n (see Fig. 2). 

 

However, if the region of vacuum under study turns out to be curved, then all m,n-vacuums will differ somewhat from each 

other due to the fact that light rays with different wavelengths have different thicknesses. This circumstance is theoretically 

substantiated in the sections of geometric optics related to the resolution of optical devices [17, 18] and is confirmed by 

experimental data (see Fig. 3). 

 
                        

Fig. 3: Experimental data on the thickness of the laser beam depending on the length 

wave  of the corresponding monochromatic radiation  

 

In this case, each m,n-vacuum (i.e., 3Dm,n-landscape) will be unique (see Fig. 4), since vacuum irregularities are averaged 

within the thickness of the probing light beam. 

 

            
Fig. 4: Illustration of a curved m,n-vacuum embedded in 

curved f,d-vacuum (where f,d  m,n) 

 



Therefore, one m,n-vacuum is only one 3-dimensional "slice" of the curved vacuum region. For a more complete description 

of the curved section of the vacuum, it is necessary to have an infinite set of curved m,n-vacuums nested in each other. 

 

Thus, the local volume of vacuum is an infinitely complex system consisting of an infinite number of nested m,n-vacuums. 

However, the situation is simplified by the fact that in the entire studied range of electromagnetic wave lengths, all m,n-

vacuums obey the same physical laws. Therefore, the knowledge gained in the study of one k,r-vacuum is automatically 

extended to all other m,n-vacuums. 

 

Below, the mathematical apparatus of the Algebra of Stignatures is developed, designed to study the local volume of only one 

m,n-vacuum. But this apparatus is suitable for studying not only all m,n-vacuums, but also any other continuous media in 

which wave disturbances propagate at a constant speed. 

 

3 Sixteen rotating 4-bases 

 

Let’s return to the consideration of the undistorted volume of one of the m,n-vacuums (see Fig. 1) and examine the "vacuum" 

region in the vicinity of the point O (see Fig. 5). 

 

 
 

Fig. 5: Non-curved 3D light lattice of m,n-vacuum, revealed from the "vacuum" (emptiness) 

 by means of mutually perpendicular monochromatic rays of light with a wavelength m,n. 

The cells of such a lattice are cubes with edge length  mn  102m,n 

 

We calculate how many orthogonal 3-bases originate at the central point O (see Fig. 5). If we spread the 3-bases from the 

point O in different directions, then it turns out that there are 16 of them (Fig. 6 a,b). 

 

                                             
                                       a)                                                     b)                                                       c)  

 

Fig. 6: Sixteen 3-bases at the central point O of the studied volume of m,n-vacuum 

a) 8 internal 3-bases; b) 8 outer 3-antibases; c) adjacent 3-bases 

   

Eight 3-bases refer to the cubic cell itself (Fig. 6a), and eight opposite 3-antibases refer to adjacent cubic cells (Fig. 6b,c). 

 

According to the "vacuum balance" condition, any movement in a vacuum must be accompanied by a similar anti-motion. 

Therefore, if one 3-basis (together with the cubic cell) is rotated clockwise, then this is only possible if the adjacent cubic cell 

(together with the 3-antibasis) is similarly rotated counterclockwise, since there is no fulcrum in vacuum. 

 

 



In connection with the above, it is convenient to add to all eight 3-bases (Fig. 6a) along the fourth time axis t, and to eight               

3-antibases (Fig. 6b) add along the fourth anti-axis (i.e., oppositely directed axis) of time – t. 

 

The time axis t is determined by the angular frequency of rotation of the 3-basis (ie, the number of revolutions per unit time). 

The rotation of the 3-basis with a constant angular velocity is described by the expression d /dt = (where  and   are the 

phase and angular frequency of rotation of the 3-basis). Integrating this expression, we get the time axis t = /.. The rotation 

of the 3-antibasis in the opposite direction similarly forms the anti-axis of time – t = /. 

 

Thus, at the considered point О m,n-vacuum (Fig. 5) there are 8 + 8 = 16 orthogonal 4-bases (see Fig. 6), which are shown in 

Fig. 7. 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

   

 
Fig. 7: Sixteen 4-bases starting at point O, obtained by adding to eight 3-bases (Fig. 6a) of the fourth time axis 

 and adding to eight 3-antibases (Fig. 6b) the fourth anti-time axis 

 

 

4 Stignature of an affine 4-dimensional space 

 

Each of the sixteen 4-bases shown in Fig. 7 specifies the direction of the axes of a 4-dimensional affine (i.e., vectors) space. 

To introduce the characteristic "stignature" of an affine space, we first define the concept of "base". 

 

We choose from the sixteen 4-bases shown in Fig. 7, one 4-basis, for example, e5 (e0
(5),e1

(5),e2
(5),e3

(5)) and let's call it "base" 

(see Fig. 8). 

 

 
 

Fig. 8: An affine 4-dimensional space, the directions of the axes of which are given by  

the 4-basis e5(e0
(5),e1

(5),e2
(5),e3

(5)) with the conventional signature {+ + + +} 

 

 



We conditionally accept that the directions of all unit vectors of the "base" are positive (see Fig. 8) 

 

ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5))  =  (+1, +1,+ 1, +1) → {+ + + +}.                                                                                                   (2) 

  

Here we introduce the abbreviated notation {+ + + +}, which we will call the "stignature" of the affine space given by the      

4-basis e5 (that is, the "base"). That is, a stignature is a set of 4 signs that determine the direction of the axes of a 4-dimensional 

affine space in relation to the direction of the axes of the base affine space. 

 

All other 4-bases shown in Fig. 7 have the following signatures with respect to the directions of the "base" unit vectors (i.e., 

the 4-basis e(5)) (see Table 1). 

  

                    Table 1: Stignatures of affine spaces 

 

4-basis Stignature 4-basis Stignature 

 

e1 (e0
(1), e1

(1), e2
(1), e3

(1)) = 

  =  (1,  1,  –1,  1)        →         {+ + – +}      

 

 e2 (e0
(2), e1

(2), e2
(2), e3

(2)) = 

   =  (1,  –1,  –1,  –1)   →         {+ – – –}   

 

 e3 (e0
(3), e1

(3), e2
(3), e3

(3)) = 

     = (1,  1,  –1,  –1)    →          {+ + – –}   

   

e4 (e0
(4), e1

(4), e2
(4), e3

(4)) = 

     = (1, –1, –1,  1)     →          {+ – – +}   

 

 ei
(5) (e0

(5), e1
(5), e2

(5), e3
(5)) = 

     = (1,  1,  1,  1)       →          {+ + + +}  

 

 e6 (e0
(6), e1

(6), e2
(6), e3

(6)) = 

     = (1, –1,  1, –1)    →           {+ – + –}   

 

 e7 (e0
(7), e1

(7), e2
(7), e3

(7)) = 

     = (1,  1,  1, –1)     →           {+ + + –}  

 

 e8 (e0
(8), e1

(8), e2
(8), e3

(8)) = 

     = (1, –1,  1,  1)    →            {+ – + +}  

 

e9 (e0
(9), e1

(9), e2
(9), e3

(9)) = 

   = (–1,  1, –1,  1)        →           {– + – +}                

   

e10 (e0
(10), e1

(10), e2
(10), e3

(10)) = 

    = (–1,  1,  –1,  –1)    →            {– – – –}  

   

e11 (e0
(11), e1

(11), e2
(11), e3

(11)) = 

    = (–1,  1,  –1,  –1)    →            {– + – –}   

 

e12 (e0
(12), e1

(12), e2
(12), e3

(12)) =  

     = (–1, –1, –1,  1)     →            {– – – +}    

 

e13 (e0
(13), e1

(13), e2
(13), e3

(13)) =  

     = (–1,  1,  1,  1)        →           {– + + +}   

 

e14 (e0
(14), e1

(14), e2
(14), e3

(14)) =  

     = (–1, –1,  1, –1)      →           {– – + –}   

 

ei
(15) (e0

(15), e1
(15), e2

(15), e3
(15)) = 

    = (–1, 1, 1 –1)           →            {– + + –}  

 

e16 (e0
(16), e1

(16), e2
(16), e3

(16)) =  

    = (–1, –1,  1,  1)         →           {– – + +} 

          

 

Stignatures given in Table. 1 are combined into a 16-component matrix: 

 

𝑠𝑡𝑖𝑔𝑛(𝑒𝑖
(𝑎)
) = (

{+ + + +} {+ + + −} {− + + −} {+ + − +}

{− − − +} {− + + +} {− − + +} {− + − +}

{+ − − +} {+ + − −} {+ − − −} {+ − + +}

{− − + −} {+ − + −} {− + − −} {− − − −}

).                                                                           (3) 

 

Any other 4-basis from the sixteen 4-bases shown in Fig. 7 can be chosen as the "base". In this case, only the combinations 

of signs in the stignatures of affine spaces will change, but all properties of the matrix of signatures (3) will remain unchanged. 

 

5 Stignature matrix properties 

 

Stignature matrix (3) was obtained as a result of the development of vacuum physics. However, this matrix is a separate 

universal mathematical object that can be applied in various branches of scientific knowledge. 

 

 



Let’s list some properties of the stignature matrix (3). 

 

5.1. The sum of all 16 stignatures from matrix (3) is equal to the zero stignature 

 

       {+ + – +}  +  {+ – – –}  +  {+ + – –}  + {+ – – +} +  

   +  {+ + + +}  +  {+ – + –}  + {+ + + –}  + {+ – + +} +                                                                                                    (4) 

   +  {– + – +}  +  {– – – – }  + {– + – –}   + {– – – +} + 

   +  {– + + +}  +  {– – + –}  +  {– + + –}  + {– – + +} = {0000}.            

 

Ex. (4) can be represented in the following form 

0 =  

0 = 

0 = 

0 = 

0 =                                                            

0 = 

0 = 

0 = 

0 = 

0 =  

  

 {0   0   0   0} 

 {+   +   +   +} 

 {–   –   –   + } 

 {+   –   –   + } 

 {–   –   +   – } 

 {+   +   –   – } 

 {–   +   –   – } 

 {+   –   +   – } 

 {–   +   +   +} 

 {0   0    0   0} 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

{0   0   0   0} 

{–  –   –   – } 

{+  +   +  – } 

{–  +   +  – } 

{+  +   –   +} 

{–   –   +  +} 

{+  –    +  +} 

{–   +   –  +} 

{+   –   –  –} 

{0   0   0   0} + 

= 0 

= 0 

= 0                                                                                                          (5)       

= 0 

= 0                                                              

= 0 

= 0 

= 0 

= 0 

= 0 ,              

where the summation of the signs "+" and "–" is performed in each row and column in any direction according to the rules: 

 

«–» + «–» = 2«–»,      «+» + «+» = 2«+»,     «+» + «–» = «–» + «+» = 0.                                         (6) 

 

Operations with signs in (5) are performed in rows and columns (i.e., in ordered rows or by ranking), therefore this expression 

is called a ranking expression, and two columns consisting of stignatures are called "rankings". The ranking expression (5) 

reveals the internal structure of the void and is called “zero splitting”. 

 

5.2. The sum of all 64 signs included in the matrix (3) is equal to zero, that is, it satisfies the vacuum balance condition: 

                             

32«+» + 32«–» = 0.                                                                                                                                                            (7) 

 

5.3. There are four binary combinations of signs "+" and "–", which we will call binary stignatures: 

 

𝐻′ ↔ {
+
−
} ,    𝑉 ↔ {

−
+} ,    𝐻 ↔ {

+
+
} ,    𝐼 ↔ {

−
−} ,                                                                                                                (8)   

 

or in transposed form 

 

𝐻′+ ↔ {+ −} ,  𝑉+ ↔ {− +},    𝐻+ ↔ {++} ,     𝐼+ ↔ {−−}.                                                                                         (9) 

 

Combine (∪) binary stignatures (8) or (9) according to the rules: 

 

{
+
−
} ∪ {

−
+} = {

+ −
− +

},       {
+
+
} ∪ {

−
+} = {

+ −
+ +

},       {
+
−
} ∪ {

−
−} = {

+ −
− −

}  and etc., 

or 
{+ +} ∪ {+ +} =  {+ + ++},     {+ −} ∪ {+ +} = {+ − + +},     {− −} ∪ {+ −} = {− − + −}  and etc.                     (10) 

 

As a result, we get 16 signatures of the matrix (3): 

                                                                                                            



}.{};{};{};{

};{};{};{};{

};{};{};{};{

};{};{};{};{

−++−








−−

++
=−++−









−+

+−
=−+++









−+

++
=−+−−









−−

+−
=

+−−−








+−

−+
=+−+−









++

−−
=+−++









++

−+
=+−−−









+−

−−
=

++−−








+−

++
=++−−









++

+−
=++++









++

++
=++−−









+−

+−
=

−−−+








−−

−+
=−−+−









−+

−−
=−−++









−+

−+
=−−−−









−−

−−
=

HHHVHHHI

VHVVHVIV

HHVHHHIH

IHVIHIII

 

                   

(11)

                                                                                                   

 

 

5.4. The Kronecker union of the two-row matrix of binary signatures (9) forms the stignatures matrix (3): 

 

 (
{+ +} {+ −}

{− +} {− −}
)
⊕2

= (

{+ +} ∪ (
{+ +} {+ −}

{− +} {− −}
) {+ −} ∪ (

{+ +} {+ −}

{− +} {− −}
)

{− +} ∪ (
{+ +} {+ −}

{− +} {− −}
) {− −} ∪ (

{+ +} {+ −}

{− +} {− −}
)

) = 

 

= (

{+ ++ +} {+ + + −} {+ − + +} {+ − +−}

{+ + − +} {+ + − −} {+ − − +} {+ − −−}

{− + + +} {− + + −} {− − + +} {− − +−}

{− + − +} {− + − −} {− − − +} {− − −−}

) ,

                                                                                               

(12) 

 

where ⊕ is a symbol denoting the Kronecker union of binary stignatures according to the rules (10). 

 

5.5. Stignature matrix (3) can be represented as a sum of diagonal and antisymmetric matrices 

 

(

{+ + + +} 0 0 0

0 {− + + +} 0 0

0 0 {+ − − −} 0

0 0 0 {− − − −}

) + (

0 {+ + + −} {− + + −} {+ + − +}

{− − − +} 0 {− − + +} {− + − +}

{+ − − +} {+ + − −} 0 {+ − + +}

{− − + −} {+ − + −} {− + − −} 0

) .     (13) 

 

5.6. Hadamard stignatures for noise-proof encryption of information 

 

If we return the original units to the two-row stignatures (11), then we get 16 two-row matrices 

  

(
−1 −1
−1 −1

)  (
1 −1
1 −1

)  (
−1 −1
    1 −1

)  (
   1 −1
−1 −1

)  (
−1 1
−1 1

)    (
1 1
1 1

)   (
−1 1
   1 1

)    (
  1 1
−1 1

)                                                            

(14) 

 

(
−1 −1
−1    1

)  (
1 −1
1    1

) (
−1 −1
   1     1

) (
   1 −1
−1    1

)  (
−1    1
−1 −1

)  (
1    1
1 −1

) (
−1   1
    1 −1

) (
  1    1
−1 −1

).                                          

(15) 

                                                                                                        

of these, eight matrices are: 

 

(
−1 1
   1 1

)     (
   1 1
−1 1

)    (
1 −1
1    1

)    (
1    1
1 −1

) (
  1 −1
−1 −1

) (
−1 −1
   1 −1

) (
−1   1
−1 −1

) (
−1 −1
−1    1

)                                   (16)                     

 
are Hadamard matrices, because they satisfy the condition 

 

Н(2) ⊗ НТ(2) = 2 (
1 0
0 1

).                                                                                                                                                (17)     



 

When raising any of the matrices (16) to Kronecker powers, the Hadamard matrices H(n) are again obtained, satisfying the 

condition: 

 

Н(𝑛) ⊗ НТ(𝑛) = 𝑛𝐼,                                                                                                                                                           (18) 

 

where I is an n×n diagonal identity matrix: 

 

  𝐼 = (

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . 0
0 0 0 1

).                                                                                                                                                     (19) 

 

For example, 

 

𝐻(2)⊗2 = (
1    1
1 −1

)
⊗2

= (
1    1
1 −1

) ⊗ (
1    1
1 −1

) = (
1 (
1    1
1 −1

)    1 (
1    1
1 −1

)

1 (
1    1
1 −1

) −1 (
1    1
1 −1

)
) = (

1    1    1    1
1 −1    1 −1
1    1 −1 −1
1 −1 −1    1

),              (20)       

                                                                                                                        

𝐻(2)⊗3 = (
1    1
1 −1

)
⊗3

= (
1    1
1 −1

) ⊗(

1    1    1    1
1 −1    1 −1
1    1 −1 −1
1 −1 −1    1

) =

(

 
 
 
 
 

1    1    1    1    1    1    1    1
1 −1    1 −1    1 −1    1 −1
1    1 −1 −1    1    1 −1 −1
1 −1 −1    1    1 −1 −1    1
1    1    1    1 −1 −1 −1 −1
1 −1    1 −1 −1    1 −1    1
1    1 −1 −1 −1 −1    1    1
1 −1 −1    1 −1    1    1 −1)

 
 
 
 
 

            (21)                                                                                                                                                

and so on according to the algorithm 

 

Н(2)k = Н(2k) = Н(2)  Н(2)k-1 = Н(2)  Н(2k-1),                                                                                                            (22) 

 

Hadamard matrices are used to construct error-correcting codes. In particular, Hadamard matrices are used to decipher the 

genetic code [11,12]. 

 

If in the matrices (20) and (21) again instead of 1 and –1 we use the signs {+} and {–}, then we obtain the rule for raising 

two-row stignatures to the Kronecker power, for example, 

 

{
+ +
+ −

}
⊗2

= {
+ +
+ −

}⊗ {
+ +
+ −

} = {
+ {
+ +
+ −

} + {
+ +
+ −

}

+ {
+ +
+ −

} − {
+ +
+ −

}
} = {

+ + + +
+ − + −
+ + − −
+ − − +

}

                                                    

(23) 

 

{
+ +
+ −

}
⊗3

= {
+ +
+ −

}⊗ {

+ + + +
+ − + −
+ + − −
+ − − +

} =

{
 
 
 

 
 
 
+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −}

 
 
 

 
 
 

                                                       (24)    

double row stignatures, 

 

{
− +
+ +

}  {
+ +
− +

}  {
+ −
+ +

}  {
+ +
+ −

}  {
+ −
− −

}  {
− −
+ −}   {

− +
− −

} {
− −
− +}                                                                  (25)                      

 

corresponding to matrices (15) will be called two-row Hadamard stignatures. 

 

 



5.7. Noise-immune coding of genetic information 

                                              

It was shown in [11,12] that Hadamard matrices (15) or two-row stignatures (25) can be used 

as the basis for studying noise-resistant genetic information. Deoxyribonucleic acid (DNA) 

molecules are built from four chemical elements (nucleotides): 

 

  Adenine      -    A    or     I 

  Guanine      -    G    or     H                                                                                           (26)    

  Thymine     -    T    or     V                          

  Cytosine     -    С    or     H 

 

These four nucleotides correspond to two bits of information or four binary stignatures (9)           

 

 

                                                                                                                          

                                                              (27)    

         

 

Nucleotides (27) form: doublets, triplets and other more complex combinations of informa-

tional polymer, i.e. DNA molecules [11,12]: 

 

       

                                                                      (28)    

 

                                     (29)    

 

These combinations of nucleotides correspond to the combinations of the "+" and "–" signs obtained from the two-row Hada-

mard stignatures (25), for example 

    

{
+ +
+ −

}
⊗2

= {

+ + + +
+ − + −
+ + − −
+ − − +

} ,

         

{
+ +
+ −

}
⊗3

=

{
 
 
 

 
 
 
+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −}

 
 
 

 
 
 

 .                                        (30)    

 

Thus, the Algebra of Stignatures can be used to develop the theory of matrix coding of the space-time continuum. 

 

5.8. Binary-coded decimal and Arithmetic of Stignature  

 

There is a complete correspondence between the binary-coded decimal (BCD) of digits and the 16 affine space stignatures 

from the matrix (3): 

 

 
























































=























































=








TTTC

TGTA

CTCC

CGCA

GTGC

GGGA

AVHA

AGАА

TC

GA
T

TC

GA
C

TC

GA
G

TC

GA
A

TC

GA
2





































































































































































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


















































































=








TTTTTC

TTGTTA

TCTTCC

TCGTCA

TGTTGC

TGGTGA

TATTAC

TAGTАА

CTTCTC

CTGCTA

CCTCCC

CCGCCA

CGTCGC

CGGCGA

CATCAC

CAGCАА

GTTGTC

GTGGTA

GCTGCC

GCGGCA

GGTGGC

GGGGGA

GATGAC

GAGGАА

ATTATC

ATGATA

ACTACC

ACGACA

AGTAGC

AGGAGA

AATAAC

AAGAАА

TC

GA
3

A 00 {– –} 

G 01 {– +} 

T 10 {+ –} 

C 11 {+ +}  

    Section of a DNA molecule 
 

 

 



Table 2: Relationship between digits, BCD and stignatures 

 

Digit Binary-coded decimal  Stignature 

 

                            Allowed combinations 

 

 23 22 21 20  

0 0 0 0 0 {− − − −} 
1 0 0 0 1 {− − − +} 
2 0 0 1 0 {− − + −} 
3 0 0 1 1 {− − + +} 
4 0 1 0 0 {− + − −} 
5 0 1 0 1 {− + − +} 
6 0 1 1 0 {− + + −} 
7 0 1 1 1 {− + + +} 
8 1 0 0 0 {+ − − −} 
9 1 0 0 1 {+ − − +} 

 

Additional characters   

 

* (asterisk) 1 0 1 0 {+ − + −} 
# (lattice) 1 0 1 1 {+ − + +} 
+ (plus) 1 1 0 0 {+ + − −} 
− (minus) 1 1 0 1 {+ + − +} 
, (comma) 1 1 1 0 {+ + + −} 
damping 1 1 1 1 {+ + + +} 

 

From Table 2 it follows that if 0 is replaced by “–”, and 1 is replaced by “+”, then digits from matrix (3) can be assigned 

numbers. In addition, by analogy with binary-decimal arithmetic, the arithmetic of stignatures can also be constructed, 

as shown in the example in Table 3. 

         

Table 3: An example of an arithmetic operation for adding stignatures 

 

BCD addition operation example Example of stignature addition operation: 

Find the number A = D + C, where D = 3927, C = 4856. 

Let's represent the numbers D and C in binary decimal form: 

D = 392710 = 0011 1001 0010 0111 BCD 

C = 485610 = 0100 1000 0101 0110 BCD 

We sum the numbers D and C according to the rules of bi-

nary arithmetic: 

             *      ** 

   0011 1001 0010 0111 

+ 0100 1000 0101 0110 

     _________________ 

= 1000 0001 0111 1101 - Binary sum 

+          0110          0110 - Correction 

   __________________ 

   1000 0111 1000 0011 
 

where 

* – tetrad from which there was a transfer to the senior tetrad; 

** – tetrad with a forbidden combination of bits. 

Find the number A = D + C, where D = 3927, C = 4856. 

Let's represent the numbers D and C in stignature form: 

D = 392710 = {– – + +} {+ – – +}{– – + –}{– + + +}ASt 

C = 485610 = {– + – –} {+ – – –}{– + – +}{– + + –}ASt 

We sum the numbers D and C according to the 

rules of stignature arithmetic:     

                    *             **  

   {– – + +}{+ – – +}{– – + –}{– + + +} 

+ {– + – –}{+ – – –}{– + – +}{– + + –} 

   _______________________________ 

= {+ – – –}{– – – +}{– + + +}{+ + – +} - Binary sum 

                  {– + + –}                {– + + –} - Correction 

  _______________________________ 

   {+ – – –}{– + + +}{+ – – –}{– – + +} 
 

where 

* – tetrad from which there was a transfer to the senior tetrad; 

** – tetrad with a forbidden combination of bits. 

 

 

Arithmetic of Stignature can be used to describe the nodal configurations of affine spaces. 

       

 a) Indo-Arabic numerals                   b) Calendar numerals 

                                           Maya (13×28= 364+1) 

        

c) Chinese numerals. 

    The most difficult character 

    corresponds to 0 

 
Numbers in different cultures 

 

 

 

 



 

 

5.9. "Colored" quaternions 

 

Sixteen stignatures (3) correspond to 16 types of “colored” quaternions: 

 

 

 

 

                                               (31) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complete set of "colored" quaternions (31) can be applied in various branches of mathematics and physics. By direct 

calculation it is easy to verify that the sum of all 16 types of "colored" quaternions (31) is equal to zero 

 

∑ 𝑧𝑘
16
𝑘=1 = 0.                                                                                                                                                                         (32) 

 

Expression (32) shows that the superposition (addition) of all types of "colored" quaternions is balanced with respect to zero, 

i.e. satisfies the "vacuum balance" condition. 

 

5.10. Classes of stignature  

 

The signatures included in the matrix (3) can be divided into three classes: 

 

Class 1: all signs in the stignature are the same - 2 stignatures: 

 

{+ + + +} {– – – –}.                                                                                                                                                             (33)  

 

Class 2: two identical signs in a stignature - 6 stignatures: 

 

{+  –  –  +} {+  +  –  –}{+  –  +  –}                                                                                                                                     (34)   

  

{–  +  +  –} {–  –  +  +}{–  +  –  +}. 

 

Class 3: three identical characters in a stignature - 8 stignatures: 

 

{–  –  –  +} {–  –  +  –}{–  +  –  –}{+  –  –  –}                                                                                                                    (35)   

  

{+  +  +  –}{+  +  –  +}{+  –  +  +}{–  +  +  +}. 

 

 

 

 

 

 

 

z1 = x0 + ix1 + jx2 + kx3        {+ + + +} 

 

z2 = –x0 –ix1 – jx2+ kx3        {– – – +} 

 

z3 = x0 – ix1 – jx2+ kx3         {+ – – +} 

 

z4 = –x0 – ix1+ jx2–kx3         {– – + –} 

 

z5 = x0 +ix1 – jx2 – kx3         {+ + – –} 

 

z6 = –x0 + ix1 – jx2–kx3        {– + – –} 

 

z7 = x0 – ix1+ jx2 – kx3         {+ – + –} 

 

z8 = –x0+ix1 + jx2 + kdx3      {– + + +} 

 

 

{– – – –}     z9 = –x0 – ix1 – jx2 – kx3  

 

{+ + + –}     z10 = x0 + ix1 + jx2 – kx3   

           

{– + + –}     z11= – x0 + ix1 + jx2 – kx3  

 

{+ + – +}     z12= x0 + ix1 – jx2 + kx3  

 

{– – + +}     z13= –x0 – ix1 + jx2+ kx3  

 

{+ – + +}     z14= x0 – ix1 +jx2+ kx3 

 

{– + – +}     z15 = –x0 + ix1– jx2+ kx3  

           

{+ – – –}     z16 = x0 – ix1 – jx2 – kx3     

 



5.11. Chess analogy 

 

The chessboard has 8  8 = 64 cells: 32 of them are black and 32 are white (see Fig. 9). 

Also, in the matrix of signatures (3) there are 16  4 = 64 characters, of which 32 are 

plus "+" and 32 minus "–": 

 

(

𝐼𝐼 𝐻𝐼 𝑉𝐼 𝐻′𝐼
𝐼𝐻 𝐻𝐻 𝑉𝐻 𝐻′𝐻
𝐼𝑉 𝐻𝑉 𝑉𝑉 𝐻′𝑉
𝐼𝐻′ 𝐻𝐻′ 𝑉𝐻′ 𝐻′𝐻′

) ≡ (

{+ + + +} {+ + +−} {+ − + +} {+ − + −}

{+ + − +} {+ + −−} {+ − − +} {+ − − −}

{− + + +} {− + +−} {− − + +} {− − + −}

{− + − +} {− + −−} {− − − +} {− − − −}

).

         

 

 

At the beginning of the game, there are 32 chess pieces on the chessboard: 16 white and 

16 black (see Fig. 9). Also, in the matrix (3) there are 16 stignatures that coincide in 

properties with chess pieces in full accordance with their three classes (33) – (35) (see 

Fig. 10):   

 

 

{+ – + +} 

pawn 

 

{– – – +} 

pawn 

 

{+ + – +} 

pawn 

 

{+ – – –} 

pawn 

 

{+ + + –} 

pawn 

 

{– + + +} 

pawn 

 

{– – + –} 

pawn 

 

{– + – –} 

pawn 

 

{– – + +}  

rook 

 

{+ – + –}     

knight 

 

 

{– + + –} 

bishop 

 

{+ + + +} 

queen 

 

{– – – –} 

king 

 

{+ – – +} 

bishop 

 

{– + – +} 

knight 

 

{+ + – –} 

rook 

 
Fig. 10: Illustration of the full correspondence of the 16 stignatures of the matrix (3) to the 16 chess pieces 

 

Matrix (3) can describe both “light” (i.e., light 3Dm,n-landscapes), which corresponds to 16 white chess pieces, and “darkness” 

(emptiness), which corresponds to 16 black chess pieces. 

5.12. I Ching analogy 

 

The I Ching (Chinese Book of Changes) is based on two Beginnings: 

    

   Yang              Yin            

   «––»    and   «– –»,  

 

in the Algebra of Stignaturs there are also two initial signs: 

 

    « – »   and    « + ». 

 

The Book of Changes uses 8 trigrams (see Fig. 11a). Similarly, there are eight 

3-bases in the Algebra of Stignatures (see Fig. 6a) with the following stigna-

tures 

                                                                                                                                           

{+  +  +}  {–  +  +}   {–  –  +}   {–  –  –}                                             (36)    

{+  –  –}   {–  +  –}   {+  –  +}   {+  + –},                                      

 

and eight 3-antibases (Fig. 6b) with opposite stignatures 

          

{–  –  –}   {+  –  –}  {+  +  –}  {+  +  +}                                              (37)                                                                  

{–  +  +}  {+  –  +}  {–  +  –}   {–  –  +}. 

 

In the Book of Changes, all possible combinations of two trigrams generate 

64 hexagrams (Fig. 11b), and in the Algebra of Stignatures, 64 combinations 

of each 3-basis with stignatures (36) with each 3-antibasis with opposite stig-

natures (37) are possible. 

 

 

Fig. 9: The chessboard 

 

 

 

 
а) 

 

 
b) 

Fig. 11: Trigrams and hexagrams of  

the I Ching (Book of Changes) 
 

 



The three-logic of the Book of Changes is consistent with the four-logic of the Stignature Algebra if in the ranking expression 

(5) one column of signs is transferred to another side of equalities: 

 

                                                                                                                                                                                                   

                                                                     (38) 

 

 

 

 

 

 

 

 

The Book of Changes also uses four combinations of two principles: 

                              «––»   аnd    «– –»:     

 

 

 

 

 

 

 

Similarly, in the Algebra of Signatures, four binary combinations of signs “+” and “–” (9) are possible:  

{+ +}, {– –}, {+ –} {– +},  

from which affine space signatures (11) are formed, etc. 

 

5.13. Hebrew analogy 

 

Judaism is based on Algorithms for revealing the Great Name of the GOD ה-ו-ה  ,Further, instead of Hebrew letters .[13] י-

the transliteration ה-ו-ה  .H V H I will be used ≡ י-

  

One of the endless Revelations of the Name H V H I is called "Etz Chaim" ("Tree of Life" or "Tree of the Sefirot"):        

                       

(
𝐼 𝐻
𝐻′ 𝑉

)
⊗2

= (
𝐼 (

𝐼 𝐻
𝐻′ 𝑉

) 𝐻 (
𝐼 𝐻
𝐻′ 𝑉

)

𝐻′ (
𝐼 𝐻
𝐻′ 𝑉

) 𝑉 (
𝐼 𝐻
𝐻′ 𝑉

)
) = (

(
𝐼𝐼 𝐼𝐻
𝐼𝐻′ 𝐼𝑉

) (
𝐻𝐼 𝐻𝐻
𝐻𝐻′ 𝐻𝑉

)

(
𝐻′𝐼 𝐻′𝐻
𝐻′𝐻′ 𝐻′𝑉

) (
𝑉𝐼 𝑉𝐻
𝑉𝐻′ 𝑉𝑉

)
) .                                                        (39)    

  

The components of this matrix correspond to 10 Sephira (i.e. Qualities) of Spirituality: 

 

Letter of the 

Name ה-ו-ה  י-

Component of the Matrix of 

Qualities (39) (see Fig. 12) 

 

Sephirah 

i  
tip of the Letter Yud 

 

II Keter 

I 
HH 

 
Hochma 

H 
VV 

 
Bina 

V 

IV, IH, IH, VH, VH, HH 

VI, HI, HI, HV, HV, HH 

 

Tiphereth* 

H 
HH 

 
Malchut 

  

where the Sefira Tipheret* consists of six dual Sefirot [13]: 

0 =  

– = 

+ = 

– = 

+ =                                                            

– = 

+ = 

– = 

+ = 

0 =  

  {0    0    0) 

 { +   +   + } 

 { –   –   + } 

 { –   –   + } 

 { –   +   – } 

 { +   –   – } 

 { +   –   – } 

 { –   +   – } 

 { +   +   +} 

 {0    0   0 } + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

    {0   0   0} 

    {–   –   – } 

    {+   +  – } 

    {+   +   –} 

    {+   –   +} 

    {–   +   +} 

    {–   +   +} 

    {+   –   +} 

    {–   –   – } 

    {0   0   0}+ 

= 0 

= + 

= – 

= + 

= –                                                              

= + 

= – 

= + 

= – 

= 0 

Young Yin Old Yin Young Yang Old Yang 

─ ─ 

── 

── 

─ ─ 

─ ─ 

─ ─ 

── 

── 

Binary stignatures 

     {+ –} {– +} {– –} {+ +} 

 
Fig. 12: Tree of ten Sefirot (Qualities) 

 



Chesed (IV = –VI), Gevura (IH = –HI), Tiferet (IH = –HI), 

Netzach (VH = –HV), Hod (VH = –VH), Yesod (HH = –HH). 

 

The Qualities Matrix (39) can be written as the sum of two matrices 

 

(

𝐼𝐼 0 0 0
0 𝐻𝐻 0 0
0 0 𝑉𝑉 0
0′ 0 0 𝐻′𝐻′

) + (

0 𝐻𝐼 𝑉𝐼 𝐻′𝐼
𝐼𝐻 0 𝑉𝐻 𝐻′𝐻
𝐼𝑉 𝐻𝑉 0 𝐻′𝑉
𝐼𝐻′ 𝐻𝐻′ 𝑉𝐻′ 0

) .

                                                                                                   

(40) 

 

Similarly, the signature matrix (3) is the result of raising the two-row matrix to the second Kronecker power [13] 

 

(
𝐼 𝐻
𝐻′ 𝑉

)
⊗2

= (
{+ +} {+ −}

{− +} {− −}
)
⊗2

= (

{+ + + +} {+ + + −} {+ − + +} {+ − + −}

{+ + − +} {+ + − −} {+ − − +} {+ − − −}

{− + + +} {− + + −} {− − + +} {− − + −}

{− + − +} {− + − −} {− − − +} {− − − −}

) .

         

    

 

This matrix can also be represented as the sum of the diagonal and antisymmetric matrices (13) 

 

(

{+ + + +} 0 0 0

0 {− + + +} 0 0

0 0 {+ − − −} 0

0 0 0 {− − − −}

) + (

0 {+ + + −} {− + + −} {+ + − +}

{− − − +} 0 {− − + +} {− + − +}

{+ − − +} {+ + − −} 0 {+ − + +}

{− − + −} {+ − + −} {− + − −} 0

) .     (41) 

                                                                                             

Comparing the matrices (40) and (41), we find that the stignatures of the matrix (3) can reflect the characteristic properties of 

the corresponding Sefirot (Qualities) of the "Tree of Life" [13] 

 

(

𝐼𝐼 0 0 0
0 𝐻𝐻 0 0
0 0 𝑉𝑉 0
0′ 0 0 𝐻′𝐻′

) ≡ (

{+ + + +} 0 0 0

0 {− + + +} 0 0

0 0 {+ − − −} 0

0 0 0 {− − − −}

) ,

   

        

                                                                                                                                                                                             (42)                           

 (

0 𝐻𝐼 𝑉𝐼 𝐻′𝐼
𝐼𝐻 0 𝑉𝐻 𝐻′𝐻
𝐼𝑉 𝐻𝑉 0 𝐻′𝑉
𝐼𝐻′ 𝐻𝐻′ 𝑉𝐻′ 0

) ≡ (

0 {+ + + −} {− + +−} {+ + − +}

{− − − +} 0 {− − ++} {− + − +}

{+ − − +} {+ + − −} 0 {+ − + +}

{− − + −} {+ − + −} {− + −−} 0

) . 

 

Thus, the following analogy can be traced between the ten Sephira (Quality) and the sixteen stignatures of the matrix (3): 

 

1) {+ + + +} + {+ − − −} = 0     - expression of the properties of Sefira Keter II and Sefira Malchut H'H';               (42a) 

       

2) {− + + +} + {+ − − −} = 0     - expression of the properties of Sefira Hochma VV and Sefira Binah HH; 

 

3) {− − − +} + {+ + + −} = 0      - expression of the properties of the Sefira Gevura (IH = – HI); 

 

4) {+ − − +} + {− + + −} = 0     - expression of the properties of the Sefira Chesed (IV = – VI); 

 

5) {− − + −} + {+ + − +} = 0     - expression of the properties of the Sefira Teferet (IH = – H I); 
 

6) {− + − −} + {+ − + +} = 0     - expression of properties of Sefira Netzach (VH = – H V); 

 

7) {+ − + −} + {− + − +} = 0      - expression of the properties of the Sephirah Yesod (HH = – H H); 

 

8) {+ + − −} + {− − + +} = 0   - expression of the properties of the Sefira Hod (HV = – VH). 

       



This analogy corresponds to the criteria of "Zero Philosophy", emanating from "EIN SOF, Baruhu" (INFINITE NOTHING, 

Blessed be HE). In turn, from the "Zero Philosophy" follows the condition of "vacuum balance" and the structure of "split 

zero" (5), on which the geometrized vacuum physics and, in particular, the Algebra of Stignatures are based. 

 

Let's return to the representation of the Great Name of GOD ה-ו-ה  in the form of binary stignatures (9) י-

 

-xs- s -  ˧≡ H V H I  ≡  𝐻′ ↔ {+ −} , 𝑉 ↔ {− +},    𝐻 ↔ {+ +} ,     𝐼 ↔ {− −}.                                                          (42b)                                                                 

 

One of the infinite Algorithms for revealing the Name of the GOD -xs-s - ˧ ≡ H V H I is associated with 24 combinations of 

permutations of the letters H V H I [13] 

 

 

 

 

 

 

 

                                                                                             (42c) 

 

In the Lurianic Kabbalah, twelve of these combinations correspond to the 12 hours of the Day, and the remaining twelve 

combinations correspond to the 12 hours of the Night. 

 

Combining four binary stignatures (42b) according to the rules (10) in the order corresponding to combinations of four letters 

of the Name HVHI (42c) leads to 24 octaves (eights) of signs, or to 24 types of combination stignatures from matrix (3): 

 
№ Permutations of letters 

Names H V H I 

Octaves (i.e. unique 

combinations of 8 

characters) 

Combination stignatures 

from matrix (3) 

                  H’                     V                     H                      I 

1.  {+  −} ∪ {− +} ∪ {+ +} ∪ {− −} =  {+ − − + + + −−} =  {+ − − +} ∪ {+ + − −},                                         (42d) 

            
                  H’                    V                        I                     H  

2.  {+  −} ∪ {− +} ∪ {− −} ∪ {+ +} = {+ − − + − −+ +} =  {+ − − +} ∪ {− − + +},   
     
              H’                     I                       V                     H 

3.  {+  −} ∪ {− −} ∪ {− +} ∪ {+ +} =  {+  − − −− + + +} =  {+ − − −} ∪ {− + + +},   
 
                 I                        H’                   V                     H 

4.  {−  −} ∪ {+ −} ∪ {− +} ∪ {+ +}   =  {− − + −− + + +} =  {− − + −} ∪ {− + + +} ,    
 
                H                      H’                    V                      I 

5.  {+ +} ∪ {+ −} ∪ {− +} ∪ {− −}    =  {+ + + −− + − −} = {+ + + −} ∪ {− + − −}, 
      .   .   .   .   .   .   .   .   .   .    .    .   .   .   .  .   .   .   .   .   .   .   .   .   .   .   .   .   .  .   .   .   .   .   .            
                  I                      H                     V                      H’ 

24. {− −} ∪ {+ +} ∪ {− +} ∪ {+ −}  =  {− − + + −+ + −} =  {− − ++} ∪ {− + +−} .     
 

5.14. Minkowski's affine stignatures and musical harmony 

 

We represent the ranking expression (5) (zero splitting) in the following simplified form 

                                                                                                                                                                                              (43) 

 

 

 

 

 

 

 

 

 

 

I H V H   

I H H V   

I H  HV   

I H V H   

I V H H 

I V H H   

H I H V  

H V I H  

H V H I  

H I V H  

H H V I  

H H I V  

 

V H I H  

V HI H  

V H HI  

V I HH 

V H I H  

V I H H 

H V H I  

H V I H 

H I H V  

H I V H  

H H I V  

H H V I 

 

{+  +  +  +} 

{–  –  –  +}  

{+  –  –  +}  

{–  –  +  –} 

{+  +  –  –} 

{–  +  –  –} 

{+  –  +  –}  

{+  –  –  –} 

{0  0  0  0}+                     

   + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

 

{–  –   –  –} 

{+  +  +  –} 

{–  +  +  –} 

{+  +  –  +} 

{–  –  +  +} 

{+  –  +  +} 

{–  +  –  +} 

{–  +  +  +}      

{0  0  0  0}+ 

  = 0 

  = 0                                                                 

  = 0 

  = 0                          

  = 0 

  = 0 

  = 0 

  = 0 

  = 0 .                                                                       



Let’s transfer the stignatures {– + + +} and {+ – – –} from the numerators of the ranks (43) to their denominators with 

inversion, i.e. with signs reversed. Such an operation does not violate the "vacuum balance" and leads to the ranking expres-

sion 

                                                                                               (44) 

    

 

 

   

 

 

 

 

 

In this case, in the denominator of the left rank in Ex. (44), the stignature of the affine 4-Minkowski space {+ – – –} was 

obtained, and in the denominator of the right rank in Ex. (44), the stignature of the affine 4-anti–Minkowski space { – + + +} 

was obtained. 

 

Not only the ranking expression (44) leads to a balanced (with respect to zero) dyad of affine Minkowski stignatures 

 

    {+ – – –} + {– + + +} = 0. 

 

The following ranking expressions that preserve the vacuum balance lead to the same result: 

   

                                                                                                                      

                                                          

                                                                                                            (45)      

                                                                                          
 

 

                                                                                                     (46) 

 

 

    

                                  

                                                                                                           

                                                                                                  (47)                        

 

 

The Algebra of Stignature can be used as a musical score of spatial harmony. Just like in music, stignatures form balanced 

octaves (7+1= 8) of the form (44) and chords (3+1= 4) of the form (45) – (47). Moreover, in different situations, the Algebra 

of Stignatures uses a different number of signs "+" and "–" in proportions in relation to the total number: 1, 1/2, 1/8, 1/16, 

1/32, 1/64, etc. This corresponds to the proportions of the duration of the notes: 1, 1/2, 1/8, 1/16, 1/32, 1/64, etc.    

 

Ancient philosophers, beginning with the Pythagoreans, believed that Space was filled with harmonious musical rhythms and 

proportions. Music theory was later used by Johannes Kepler in «Harmonices Mundi» (Harmony of the World), which led to 

the discovery of the third law of celestial mechanics. It is possible that the combination of musical techniques with the Algebra 

of Stignatures algorithms will also lead to interesting results. 

 

5.17. Pythagorean analogy (Algebra of Signatures) 

 

Let’s pass from affine spaces to metric spaces. For this, as an example, we use an affine space with a 4-basis 

ei
(7)(e0

(7),e1
(7),e2

(7),e3
(7)) (see Figs. 7 and 13) with signature {+ + + –}. In this space, we define a 4-vector 

 

ds(7) = ei
(7)dxi

(7)  = e0
(7)dx0

(7) + e1
(7)dx1

(7) + e2
(7)dx2

(7) + e3
(7)dx3

(7),                                                                                                                                          (48) 

 

where dxi
(7) is the i-th projection of the 4-vector ds(7) onto the xi

(7) axis, the direction of which is determined by the basis vector 

ei
(7). 

   {+  +  +  +} 

   {–  –  –  + } 

   {+  –  –  + } 

   {–   –  +  –} 

   {+  +  –   –} 

   {–  +  –   –} 

   {+  –  +  – } 

   {+  –  –  – }+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

{–  –   –   –} 

{+  +   +  –} 

{–  +   +  –} 

{+  +   –  +} 

{–   –  +  +} 

{+  –   +  +} 

{–   +  –  +} 

{–   +  +  +}+ 

=0 

=0 

=0                                                  

=0  

=0 

=0 

=0 

=0 . 

 {–  –  –  +}      +     {+  +  +  –}     = 0               

 {+  –  +  –}      +     {–  +  –  +}     = 0 

 {+  +  –  –}      +     {–  –  +  +}     = 0  

 {+  –  –  –}+     +     {–  +  +  +}+    = 0 

 {–  –  +  –}      +     {+  +  –  +}     = 0               

 {+  +  –  –}      +     {–  –  +  +}     = 0 

 {+  –  –  +}      +     {–  +  +  –}     = 0  

 {+  –  –  –}+     +     {–  +  +  +}+     = 0 

 {–  –  +  –}       +     {+  +  –  +}     = 0               

 {+  +  –  –}       +     {–  –  +  +}     = 0 

 {+  –  –  +}       +     {–  +  +  –}     = 0  

 {+  –  –  –}+      +     {–  +  +  +}+     = 0. 



 

 

 

 

 

 

   
 

 

                                                                        а) {+ + + +}            б) {+ + + –} 
 

Fig. 13: Two 4-bases with different stignatures 

 

 

Similarly, we define the second 4-vector in the affine space with the 4-basis ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5)) (Figs. 7 and 13), with 

signature {+ + + +} 

 

  ds(5) = ei
(5)dxi

(5) = e0
(5)dx0

(5) + e1
(5)dx1

(5) + e2
(5)dx2

(5) + e3
(5)dx3

(5).                                                                                              (49) 

 

We find the scalar product of 4-vectors (48) and (49) 

 

  ds(5,7) 2  = ds(5)ds(7) = ei
(5)ej

(7)dxi dxj =                                                                                                                                                                                                         (50) 

 = e0
(5)e0

(7)dx0dx0
 +  e1

(5)e0
(7)dx1dx0

 + e2
(5)e0

(7)dx2dx0
 + e3

(5)e0
(7)dx3dx0

 +                                                                                                                                      

 + e0
(5)e1

(7)dx0dx1
 +  e1

(5)e1
(7)dx1dx1

 + e2
(5)e1

(7)dx2dx1
 + e3

(5)e1
(7)dx3dx1

 +   

 + e0
(5)e2

(7)dx0dx2
 +  e1

(5)e2
(7)dx1dx2

 + e2
(5)e2

(7)dx2dx2
 + e3

(5)e2
(7)dx3dx2

 +     

 + e0
(5)e3

(7)dx0dx3
 +  e1

(5)e3
(7)dx1dx3

 + e2
(5)e3

(7)dx2dx3
 + e3

(5)e3
(7)dx3dx3.   

 

For the case under consideration, the scalar products of basis vectors ei
(5)ej

(7) are:  

 

for i = j    e0
(5)e 0

(7) = 1,  e1
(5)e1

(7) = 1,  e2
(5)e2

(7) = 1,  e3
(5)e3

(7) = –1,                                                                                         (51) 

for i ≠ j,  all  ei
(5)ej

(7) = 0 .   

 

In this case, expression (50) takes the form of a quadratic form 

      

ds(5,7)2 = dx0dx0
 + dx1dx1

 + dx2dx2
 – dx3dx3

 = dx0
2 + dx1

2 + dx2
2 – dx3

2       with signature (+ + + –).                                                           (52) 

 

"Signature" (GRT term) is an ordered set of signs in front of the corresponding terms of the quadratic form. 

 

To determine the signature of the metric space with the metric (52), instead of performing the scalar product of vectors (50), 

it is enough to multiply the signs of the 4-basis stignatures shown in Fig. 18 by columns: 

 

   {+ + + +}     

   {+ + +  –}                                                                                                                                                                          (53) 

    (+ + + –)  

 

In the numerator of the rank (53), the signs in each column are multiplied according to the rules 

 

{+}  {+} = {+};        {–}  {+} = {–};                                                                                                                               (54) 

 

the result of such multiplication is written in the denominator (under the line) of the same column. The execution of actions 

according to these rules will be called rank multiplication. 

 

Just as it was done with the vectors ds(5) and ds(7) {see expressions (48) – (53)}, pairwise scalarly multiply vectors from all 16 

affine spaces with 4 bases shown in Fig. 7. As a result, we obtain 16  16 = 256 metric 4-spaces with 4-intervals of the form 

 

 ds(аb)2 = ei
(а)ej

(b)dxi(а)dxj(b),                                                                                                                                                                         (55)        

 

where  a = 1, 2, 3, … , 16;   b = 1, 2, 3, … , 16.             



 

The signatures of these 16  16 = 256 metric 4-spaces can be defined, similarly to (53), by rank multiplications of the signs 

of the signatures corresponding to the affine spaces, for example: 

 

 

 

 

 

Thus, point O (see Fig. 5) is the place of intersection of all 256 metric 4-spaces with metrics (55) and stignatures (40). In this 

variety of intersecting metric spaces, there are many features and patterns that are studied by the Algebra of Signatures.  

 

The fundamentals of the Algebra of Signature will be covered in the next article of this project. Here we only note that 

quadratic forms (i.e., metrics) of type (52), or 

 

 ds2 = dx0
2 + dx1

2 + dx2
2 + dx3

2                                                                                                                                                                                                                  (57) 

  

originate from the Pythagorean theorem с2 = a2 + b2, the proof of which in about 520 BC, brought about the greatest revolution 

in the consciousness of mankind. 

 

6 Spectra-stignature analysis 

 

As an example, we use the Algebra of Stignatures to expand the possibilities of spectral analysis. 

 

Let’s recall the well-known in quantum physics procedure for the transition from the coordinate representation to the mo-

mentum one. Let the probability distribution density of the location of an elementary particle be given as a function of space 

and time ρ(сt,x,y,z). This function is represented as a product of two amplitudes: 

 

ρ(сt,x,y,z) = φ(сt,x,y,z) φ(сt,x,y,z).                                                                                                                                        (58) 

 

Next, two Fourier transforms are performed 

       

𝜓(𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝑖
𝑝

𝜂
(𝑐𝑡 − 𝑥 − 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
           stignature {+ – – –},                                     (59) 

 

 𝜓 ∗ (𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝑖
𝑝

𝜂
(−𝑐𝑡 + 𝑥 + 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
   stignature {– + + +},                                     (60) 

 

where p = 2η/ is the generalized frequency;  is the wavelength; η is the coefficient of proportionality (in quantum me-

chanics, η = ћ is the reduced Planck constant); dΩ = dctdxdydz is an elementary 4-dimensional volume. 

The momentum (i.e., spectral) representation of the function ρ(сt,x,y,z) is obtained as a result of the product of two probability 

amplitudes (59) and (60) 

 

𝐺(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = 𝜓(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) ⋅ 𝜓 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧).                                                                                               (61) 

         

By analogy with the procedure (59) - (60), we formulate the basics of the spectral signature analysis. We represent the func-

tion ρ(сt,x,y,z) as a product of not two, but 8 "amplitudes" 

 

ρ(сt,x,y,z)=φ1(сt,x,y,z) φ2(сt,x,y,z) φ3(сt,x,y,z)×…×φ8(сt,x,y,z) = ∏ 𝜙𝑘(𝑐𝑡, 𝑥, 𝑦, 𝑧)
8
𝑘=1 .                                                       (62) 

 

Instead of the imaginary unit i , which was used in the integrals (59) and (60), we introduce into consideration eight objects 

ζr (where r = 1, 2, 3, … , 8) satisfying the anticommutative relations of the Clifford algebra: 

 

ζm ζk + ζk ζm = 0   for  m  k ,   ζm ζm = 1,                                                                                                                              (63) 

      

or ζm ζk  + ζk ζm = 2δkm , where δkm is the Kronecker symbol (δkm= 0 for m  k  and  δkm = 1 for m = k).                             (64) 

 

These requirements are met, for example, by a set of 8×8 matrices of the type 

                    

{+ – + +}                                              

{+ + + –} 

 (+ – + –) 

{+ + + +}                                                   

{+ – + –} 

 (+ – + –) 

{– + + +}                                                   

{+ + + –} 

 (– + + –) 

{+ + + +}                                                   

{– + + –}      … 

 (– + + –) 



   
































=

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000001

1

   
























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





−

−

−

−

=

01000000

10000000

00010000

00100000

00000100

00001000

00000001

00000010

2

  

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



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










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





−

−

−

−

=

01000000

00100000

10000000

01000000

00000010

00000001

00001000

00000100

3

                       (65)

 

   



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
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









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
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00100000

01000000

10000000
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4
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


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00010000

5
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
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
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6
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


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Let's perform eight "color" Fourier transforms: 

                                                                                                                Stignature 

𝜓1(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙1(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁1
𝑝

𝜂
(𝑐𝑡 + 𝑥 + 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
,         {+ + + +}                                                (66) 

𝜓2(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙2(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁2
𝑝

𝜂
(−𝑐𝑡 − 𝑥 − 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
,      {– – – +}   

𝜓3(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙3(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁3
𝑝

𝜂
(𝑐𝑡 − 𝑥 − 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
,         {+ – – +}  

𝜓4(𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙4(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁4
𝑝

𝜂
(−𝑐𝑡 − 𝑥 + 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
,      {– – + –}   

𝜓5(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙5(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁5
𝑝

𝜂
(𝑐𝑡 + 𝑥 − 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
,         {+ + – –}                          

𝜓6(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙6(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁6
𝑝

𝜂
(−𝑐𝑡 + 𝑥 − 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
,      {– + – –}                              

𝜓7(𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙7(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁7
𝑝

𝜂
(𝑐𝑡 − 𝑥 + 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
,         {+ – + –}    

𝜓8 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙8(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁8
𝑝

𝜂
(−𝑐𝑡 + 𝑥 + 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
.   {– + + +}      

                                                                                                                             {0 0 0 0} 

where the objects ζm (60) perform the function of Clifford imaginary units. 

 

 

 



We also find eight complex-conjugate Fourier images with opposite stignatures: 

 

                                                                                                                  Stignature 

   

𝜓1 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙1(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁1
𝑝

𝜂
(−𝑐𝑡 − 𝑥 − 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
,     {– – – –}                                               (67) 

𝜓2 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙2(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁2
𝑝

𝜂
(𝑐 + 𝑥 + 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
,         {+ + + –}  

𝜓3 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙3(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁3
𝑝

𝜂
(−𝑐𝑡 + 𝑥 + 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
,     {– + + –}  

𝜓4 ∗ (𝑝𝑐𝑡 , 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙4(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁4
𝑝

𝜂
(𝑐𝑡 + 𝑥 − 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
,        {+ + – +}  

𝜓5 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙5(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁5
𝑝

𝜂
(−𝑐𝑡 − 𝑥 + 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
,     {– – + +}   

𝜓6 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙6(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁6
𝑝

𝜂
(𝑐𝑡 − 𝑥 + 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
,        {+ – + +}  

𝜓7 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙7(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁7
𝑝

𝜂
(−𝑐𝑡 + 𝑥 − 𝑦 + 𝑧)}𝑑𝛺

∞

−∞
,     {– + – +}  

𝜓8 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∫ 𝜙8(𝑐𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝{ 𝜁8
𝑝

𝜂
(𝑐𝑡 − 𝑥 − 𝑦 − 𝑧)}𝑑𝛺

∞

−∞
.        {+ – – –}  

                                                                                                                                 {0 0 0 0}   

  

The integrals of the “colored” Fourier transform (61) and (62) include 16 linear forms with matrix signatures (3). 

The spectral-stignature representation of the function ρ(сt,x,y,z) is obtained as a result of the product of eight corresponding 

pairs of "color" amplitudes (66) and their complex conjugate "color" amplitudes (67) 

 

ℜ(𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) = ∏ 𝜓𝑘(𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧)𝜓𝑘 ∗ (𝑝𝑐𝑡 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧)
8
𝑘=1 .                                                                                    (68) 

                                                        

The spectral-stignature Fourier analysis proposed here can be useful for the development of "zero" technologies, such as 

sealing vacuum communication channels, and many other branches of science and technology. 

 

Carthusian crucifix 

 

The orthogonal Cartesian coordinate system is mentally connected with the crucifixion of Jesus 

Christ. Modern science was created by the universities of medieval Europe, which looked at the 

world around them through a crosshair with a suffering Savior. Also, the signs of stignatures from 

matrix (3) characterize the directions of the axes of the multidimensional crucifixion, and are as-

sociated with the Stigmata (Greek στίγματος - signs, marks, ulcers, wounds) on the head, hands 

and feet of the crucified Messiah. 

 

 

CONCLUSIONS 

 

This work is the first of a series of articles under the general title "Geometrized vacuum physics from the standpoint of the 

Algebra of Signatures", where, as a result, based on the study of vacuum properties, it is assumed: 

- build a multilayer and multilevel cosmological model with the development of ideas about the nature of all known force 

interactions, including gravity; 

- present metric-dynamic models of all elementary particles and quarks that are part of the Standard Model (with the exception 

of the Higgs boson); 

- develop a theoretical foundation for the development of "zero" (i.e., vacuum) technologies, including vacuum ethics, aes-

thetics and energy. 

 

This article proposes to explore a local area of ideal vacuum (or "vacuum", i.e. void) by probing it with light rays with a 

monochromatic wavelength m,n from three mutually perpendicular directions. As a result, a 3-dimensional light cubic lattice 

is formed in the "vacuum", which is called the m,n-vacuum (or 3Dm,n-landscape) with the edge length of the cubic cell                           



εm,n ~ 100⸳m,n (see Fig. 1 and 2). If we similarly probe the same volume of vacuum with monochromatic light rays with other 

wavelengths m+k,n+k, then we get an infinite number of m,n-vacuums nested into each other like nesting dolls (see Fig. 2). 

Such an infinite hierarchical discrete sequence of 3Dm,n-landscapes is called a longitudinal bundle of a 3-dimensional volume 

of "vacuum" (emptiness). 

 

The study of the geometric features of one ideal cubic cell of any of the m,n-vacuums led to the development of the Algebra 

of Stignature. An analysis of the properties of the matrix of stignatures (3) showed that the Algebra of Stignatures is a unique 

mathematical and logical apparatus that has its mental roots in ancient philosophical traditions. 

 

The foundations of the Algebra of Stignature presented in this article can be applied not only in vacuum physics (as will be 

shown in the following articles of this project), but also in many other branches of knowledge, for example, in: multidimen-

sional geometry, topology, continuum mechanics, crystallography, spatial coding theory, algebraic genetics, relativity theory, 

etc. In this article, as an example, the use of the Algebra of Stignatures for the development of stignature-spectral analysis is 

presented. 
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