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ABSTRACT 

 

This article is the fifth part of a scientific project under the general title "Geometrized vacuum physics based on the Algebra 

of Signatures". In this article, Einstein's vacuum equations are used as conservation laws, and their solutions as metric-dy-

namic models of stable vacuum formations. Sets of metrics-solutions of vacuum equations are considered, and methods of 

extracting information from these metrics based on Algebra of Signature are proposed. For convenience of perception of intra-

vacuum processes, a change in the interpretation of the zero components of the metric tensor was used. Instead of curved 

space-time continua, ñcoloredò elastoplastic continuous pseudo-mediums are introduced into consideration. In this case, the 

zero components of the metric tensor determine not the change in the rate of flow of local time, but the speed of flow of intra-

vacuum current in the local region of the elastoplastic pseudo-medium. At the end of the article, an extended (third) Einstein 

vacuum equation is proposed, which allows us to consider metric-dynamic models of a variety of stable corpuscular vacuum 

formations. Alsigna's infinitely deepening intertwined fabric of space-time continuum, taking into account all 16 signatures 

(i.e. 16 types of topologies), is in many ways similar to the spin network of loop quantum gravity and to 6-dimensional Calabi-

Yau manifolds. In this sense, the Algebra of Signatures can serve as a link that unites different directions in the development 

of quantum gravity. 

 

RESUMEN 

 

Este art²culo es la quinta parte de un proyecto cient²fico bajo el t²tulo general "F²sica del vac²o geometrizada basada en el 

Ćlgebra de Signatures". En este art²culo, las ecuaciones de vac²o de Einstein se utilizan como leyes de conservaci·n y sus 

soluciones como modelos m®trico-din§micos de formaciones de vac²o estables. Se consideran conjuntos de soluciones m®tri-

cas de ecuaciones de vac²o y se proponen m®todos para extraer informaci·n de estas m®tricas basados en el §lgebra de firma. 

Para facilitar la percepci·n de los procesos intra-vac²o, se utiliz· un cambio en la interpretaci·n de los componentes cero del 

tensor m®trico. En lugar de continuos espacio-temporales curvos, se introducen en consideraci·n pseudomedios continuos 

elastopl§sticos "coloreados". En este caso, los componentes cero del tensor m®trico determinan no el cambio en la velocidad 

del flujo del tiempo local, sino la velocidad del flujo de la corriente intra-vac²o en la regi·n local del pseudomedio elasto-

pl§stico. Al final del art²culo, se propone una (tercera) ecuaci·n de vac²o de Einstein ampliada, que nos permite considerar 

modelos m®trico-din§micos de una variedad de formaciones de vac²o corpusculares estables. El tejido entrelazado infini-

tamente cada vez m§s profundo de Alsigna del continuo espacio-tiempo, teniendo en cuenta las 16 firmas (es decir, 16 tipos 

de topolog²as), es en muchos aspectos similar a la red de esp²n de la gravedad cu§ntica de bucles y a las variedades de Calabi-

Yau de 6 dimensiones. En este sentido, el Ćlgebra de Signatures puede servir como v²nculo que une diferentes direcciones en 

el desarrollo de la gravedad cu§ntica. 
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BACKGROUND AND INTRODUCTION  
 

"The best things in the world are not things"  

Paraphrasing Art Buchwald  

 

This work is the fifth in a series of articles under the general title ñGeometrized vacuum physics based on the Algebra of 

Signatures.ò The purpose of this project is to study the properties of emptiness (i.e. ñvacuumò). In this regard, in the previous 

four articles of this series [1, 2, 3, 4], a method was proposed for deep probing of the ñvacuumò by illuminating it with 

mutually perpendicular monochromatic rays of light with wavelengths lm,n from all wave subranges ȹl =10m ï 10n  cm, where 

n = m + 1 (see ÄÄ 1 ï 2 in [1]). 

 

As a result, the deep probing method made it possible to represent emptiness (i.e., ñvacuumò) as an infinite sequence of                     

lm,n-vacuum nested within each other (i.e., light 3Dm,n-landscapes, see Figures 2 and 4 in [1]). Based on this method, a math-

ematical apparatus was developed under the general name ñAlgebra of Signaturò (abbreviated ñAlsignaò), suitable for de-

scribing the properties not only of ñvacuumò, but of any other continuous medium, if these media are probed not with light 

rays, but, for example, rays of sound waves. 

 

In particular, in [1, 2, 3, 4] the following were stated: 

- basics of the Algebra of Stignatures (for a set of 4-dimensional affine, i.e. vector, spaces); 

- basics of the Algebra of Signatures (for a set of 4-dimensional metric spaces); 

- basics of spectral-signature analysis; 

- some aspects of kinematics and dynamics of lm,n-vacuum layers. 

 

Each of these areas of research requires further development, but this article takes the next step in the direction of developing 

Alsignaôs mathematical apparatus, in particular, the possibility of a geometrized description of stable vacuum formations is 

considered. These are, such curved areas of ñvacuumò that do not change over time. 

 

In this article we will use the simplest version of differential geometry, with simplifications corresponding to Riemannian 

geometry (see Figure 1a or Figure 4 in [4]). We will call this type of simplification the Riemannian approximation. 

 

               
                                                               a)                                                                                        b)                                                                                   

 

Fig. 1: (repetition of Fig. 4 in [4])  a) In Riemannian geometry, the transferring of the vector ds(a) from point p1 of a curved space to the 

nearby point p2 of the same space is carried out along a tangent to the geodesic line connecting these points. In this case, only the direction 

of this vector changes, and its magnitude remains unchanged. In this case, when transferring the vector ds(a), the magnitude of the basis 

vectors em
(ʘ) and the angles between them do not change. The curvature of such a space is determined by the change in the direction of the 

vector ds(a) during its parallel translation along an infinitesimal contour; b) In the most complexly distorted space, when transferring the 

vector ds(a) tangent to the geodesic line from point p1 to p2, its direction, magnitude, displacement may change and it may be rotated along 

with twisting geodetic line. In this case, all four parameters of the 4-basis Ŭij
(a), ɓpm(a), em

(a), dxj(a) can change (see Ä 1 in [4]). When trans-

ferring the vector ds(a) in such a complexly distorted space, the magnitude of the basis vectors em
(ʘ)  and the angles between them can change, 

and the 4-basis itself as a whole can rotate and shift 



Let us recall that within the framework of Riemannian geometry, when transferring the vector ds(a)  in a curved space along a 

tangent to a geodesic line, only its direction changes (Figure 1a). In this case, the magnitude of the vector ds(a) remains 

unchanged and there is no twisting or rotation. 

 

Despite the fact that simplified differential geometry is called ñBernhard Riemann geometry,ò it should be noted that David 

Hilbert made a major contribution to its development and final formulation. In 1895, at the invitation of Felix Klein, 33-year-

old D. Hilbert moved to the University of Gºttingen and took the chair that was once occupied by Gauss and Riemann. He 

remained in this position for 35 years, virtually until the end of his life. 

 

The most complex version of differential geometry corresponds to a distorted space, in which the geodesic line between two 

nearby points p1 and p2 of this space is not only curved, but also twisted, deformed (stretched or compressed) and displaced. 

In this case, when transferring the vector ds(a) tangentially to such a geodesic line, it can change: direction, length, 

displacement, it can rotate along with the twisting of the geodesic line (see Figure 1b). We will call this most complex differ-

ential geometry ñspacemetry of meta-absolute parallelismò (abbreviated as MAP-spacemetry). 

 

MAP-spacemetry has yet to be developed despite the fact that much has already been done in this direction. For example, the 

following have been developed: Riemann-Cartan-Schouten geometry with torsion, Einstein-Weyl geometry, Weizenbeck-

Vitali -Shipov geometry of absolute parallelism, Newman-Penrose isotropic tetrad method, Rosen bimetric geometry, complex 

Riemannian geometry, Finsler geometry, teleparallel Hornsdesky gravity models, Randall-Sundrum gravity models, loop 

quantum gravity model, Brans-Dicke gravity model, Gauss-Bonet gravity model, conformal gravity, etc.  

 

As will be shown below, the Riemannian approximation (i.e., geometry with simplifications shown in Figure 1a) allows us to 

obtain metric-dynamic models of stable vacuum formations of the corpuscular type. But to describe stable nodal vacuum 

structures Riemannian geometry and Algebra ʱʘ Signature are not enough. 

 

Letôs note once again that the purpose of this article is to construct metric-dynamic models of stable vacuum formations, 

based on simplified Riemannian geometry and the Algebra of Signatures (Alsigna), presented in the first articles of the pro-

posed project [1, 2, 3, 4]. 

 

To build models of stable vacuum formations, it is necessary to first formulate conservation laws. To do this, we will use the 

general theory of relativity of A. Einstein, which is based on Riemannian geometry. However, general relativity (GR) is not 

entirely suitable for achieving this goal for a number of reasons listed below. 

 

1] Analysis of contradictions in general relativity 

 

The analysis below of the origin of the basic equation of the general theory of relativity does not pretend to be rigorous and 

is not the result of a scrupulous study of the numerous literatures devoted to this great ñmonumentò of human thought. This 

is only an attempt to reconstruct the sequence of events in order to identify the root of the contradictions in this theory. 

 

Initially, A. Einstein, over the course of 10 ï 12 years (from 1906 to 1917), built the general theory of relativity in such a way 

that for a non-relativistic approximation (i.e. for a weak gravitational field and low velocities) it was reduced to Newton's 

theory of gravitation. 

 

In Newtonian mechanics, the potential of the gravitational field ű created by a material body with mass density ɟ is described 

by the Poisson equation 

 

ȹ‰ τ“Ὃ”,                                                                                                                                                                        (1) 

 

where G = 6.674Ŀ10ï 11 NĿm2/kg3 ï gravitational constant.       

 

Outside a massive body, Poisson's equation (1) turns into Laplace's equation ȹ‰ π, the solution of which for a spherical 

body with constant mass M has the form         

  



 ‰ Ὃ
ʄ

,                                                                                                                                                                          (2) 

 

where ὶ ὼ ὼ ὼ is the distance from the center of the body to the observation point. 

 

The criterion for the truth of new ideas about the nature of gravity for A. Einstein was the possibility of returning to the 

Poisson equation (1) while simplifying the initial conditions. 

 

In addition to the condition of continuity of theories, A. Einstein was also guided by: the principle of coordinate invariance 

(i.e., the independence of the laws of physics from the choice of coordinate system), the principle of general covariance (i.e., 

the statement that equations describing physical phenomena in different coordinate systems and systems reference systems 

must have the same form. In particular, the equations must be invariant with respect to Lorentz transformations). A. Einstein 

also relied on the heuristic principle of ñequivalence of the forces of gravity and inertiaò (i.e. the force of gravitational inter-

action was identified with the force of inertia arising in the accelerated frame of reference). In other words, Einstein compared 

the effects of gravity with the curvature of 4-dimensional space-time. Another important Einsteinian principle is the ñinde-

pendence of the speed of light from the reference frame,ò which ultimately connected space and time into a single Minkowski 

space-time continuum with the metric ds2 = ï ʩ2dt2+dx2+dy2+dz2. At the beginning of his creative career, A. Einstein was 

inspired by the ideas of E. Mach that the characteristics of space and time (in particular, the properties of inertial reference 

systems) are predetermined by the distribution of massive bodies. Einstein also agreed with Mach's criticism of Newtonian 

physics regarding absolute space, absolute motion and absolute mass, from which it followed that all equations of physics 

should include only relative quantities, for example, relative distances, relative velocities and relative inertia. But subse-

quently, the long-range action of Newtonôs gravity (which E. Mach adhered to) came into conflict with the limit of the speed 

of light, and the conditions for the formation of inertial forces with the principle of equivalence. Therefore, within the frame-

work of Einstein's special and general theories of relativity, Mach's ideas changed beyond recognition. 

 

In the period 1913 ï 1915 Albert Einstein, with the assistance of Marcel Grossmann, took advantage of the achievements of 

Riemannian geometry, generalized to the case of curved 4-dimensional space-time based on the work of Hendrik Lorentz, 

Henri Poincar® and Hermann Minkowski. Einstein, together with Adrian Fokker, was also influenced by Gunnar Nordstrºm's 

nonlinear theory of gravity. 

 

As a result, in the middle of 1915, Einstein wrote down the generally covariant equation [5] 

 

ὫὙ   Ὕ Ὣ ʊ,                                                                                                                                           (3) 

 

where Ὣik are the components of the metric tensor of a curved 4-dimensional space with the metric ds2 = Ὣik dxidxk; 

Ὣ ȿὫ ȿ  | is the determinant of the matrix Ὣik.                                                                                                                  (4) 

ⱡ ï proportionality coefficient; 

Ὑ
ː ː

ːː ːː  is Ricci tensor;                                                                                                          (5) 

ː Ὣ  are Christoffel symbols;                                                                                                 (6) 

Ὕ  is energy-momentum density tensor of a material object; 

T  is trace of the energy-momentum density tensor, Ὕ Ὣ Ὕ .     

 

It is very difficult to understand the incredibly intense thought process of A. Einstein, but, apparently, he equated the fully 

geometrized Ricci tensor Ὑ  with the material tensor Ὕ Ὣ ʊ  because in curved space the covariant derivatives of all 

these tensors are equal to zero  

ᶯὙ πȟ     ɳ Ὕ ὝὫ πȟ    ɳ Ὕ πȟ     ɳ Ὣ πȟ                                                                                       (7) 

                                                            

David Hilbert showed the mathematical incorrectness of Eq. (3).   

 



D. Hilbert in 1915 was in close correspondence with A. Einstein and he, apparently, saw Eq. (3) with a trace term on the right 

side [6]. The presence of the trace term ὝὫ  in Eq. (3) could serve as a guide for Hilbert in his search for the correct solution. 

 

In the 1915 paper [7], D. Hilbert calculated the variation of the integral   

 

᷿ Ὑ ὫὨɱ ᷿ Ὣ Ὑ ὫὨɱ,                                                                                                                                (8) 

 

where Ὑ Ὣ Ὑ  is scalar curvature;                                                                                                                                (9) 

Ὠɱ ὨὸὨὼὨώὨᾀ  is element of 4-dimensional volume. 

 

As a result, Hilbert obtained a tensor with a trace term  Ὑ ὙὫ , the covariant derivative of which is equal to zero [7] 

 

ᶯ Ὑ ὙὫ πȢ                                                                                                                                                        (10) 

 

Later it turned out that within the framework of Riemannian geometry the second Bianchi identity is proved 

 

ᶯὙ ᶯὙ ᶯὙ πȢ                                                                                                                                          (11) 

 

With simple transformations and multiplication by the contravariant tensor Ὣ , the Bianchi identity (11) is reduced to                          

Ex. (10). This method of obtaining the Einstein tensor Ὑ ὙὫ  is called ñroyalò because of its prostate. However, ac-

cording to many researchers, neither Einstein nor Hilbert knew the Bianchi identities at the time of the creation of the basic 

equation of general relativity. Both geniuses used the calculus of variations. 

 

Some researchers believe that A. Einstein learned about the tensor with a trace term Ὑ ὙὫ  from the work of D. Hilbert 

[7]. Therefore, he multiplied both sides of Eq. (3) by Ὣ   

 

Ὣ Ὑ   Ὣ Ὕ Ὣ ʊ,                                                                                                                                        

 

as a result, he got Ὕ ὙȾ , from which the equation easily follows 

 

Ὑ ὙὫ  ὝȢ                                                                                                                                                          (12) 

 

From the special theory of relativity A. Einstein knew that the energy-momentum density tensor (or stressïenergy tensor) 
can have the form [8] 

 

Ὕ ὴ ”ὧ όό ὴὫ ὊὊ Ὣ Ὂ Ὂ ȟ                                                                                           (13)    

 

where ɟ is the density of matter; ʩ  όό ï speed of light; ui ï 4-speed of matter movement; ʨ ï pressure, Fil ï electric 

field.        

 

For dusty stationary and uncharged matter (i.e., at ʨ = 0,  ux = uy = uz = 0  and  Fil = 0), only one component of the energy-

momentum tensor (13) is not equal to zero T00 = ɟc2 [8].                                                    

 

Therefore, at low speeds compared to the speed of light and in the approximation of a weak gravitational field, i.e.                          

Ὣ ρ ς‰Ⱦὧ, Eq. (12) reduces to Poissonôs equation (1) if the proportionality coefficient is 

 

  = 8́ G/c4 å 2,07665 10ï43 Nï1 

 



In fact, a methodological substitution occurred in this task. It is clear that Einstein was solving a colossally complex problem, 

and it was important for him that in the non-relativistic (Newtonian) limit, Eq. (12) was reduced to the Poisson equation (1). 

But this happened due to intricate manipulation of relativistic mass. As a result, a fitting parameter arose, the famous               E 

= mc2, which was substituted into the classical non-relativistic Lagrangian 

 

ὒ άὧ ά•.  

 

The constant value mc2 in the Lagrangian does not affect the equation of motion of a material object, but if this enormous energy of a body 

at rest (included in the consideration beyond any common sense) is removed from this Lagrangian, then the Poisson equation (1) from the 

Einstein-Hilbert equations (12) at low speeds and a weak field it will not work. That is, without a purely relativistic correction mc2, no non-

relativistic classical limit can be obtained from the general relativity equations ï this is a paradox in itself. 

 

As a result, this adjustment led to an incorrect result. If the solution (2) ‰ ὋὓȾὶ) to substitute into the metric with a zero 

component Ὣ ρ ς‰Ⱦὧ 

 

Ὠί  ρ
̒
 ̒Ὠὸ Ὠὶᴆ  ρ

ʄ

̒
 ̒Ὠὸ Ὠὶᴆ                                                                                                                                        

 

then this metric will not be a solution to Eq. (12) with T00 = ɟc2 and  ὓ ”᷿Ὠὠ 
 

  Ὑ ὙὫ ”̒ .                                                                                                                                                  

 

In the best case, this metric is the Schwarzschild solution of the vacuum equation Ὑ π. 
 

òNobody understands quantum mechanics,ò ï said Richard Feynman, and no one understands the theory of relativity. His-

torians of science say that after the lecture, enthusiastic students said to Arthur Eddington: ñYou are the second person in 

the world who understands the general relativity!ò Eddington responded by asking: ïñWhoôs first?ò 

        

Can this be considered Einstein's mistake? Of course not. Firstly, Einstein was sincere in his calculations, because the result 

obtained convincingly followed from the special theory of relativity. Secondly, he completely repeated the logic of post-New-

tonian physics, because potential (2) was a solution to the equation ȹʟ =0. Third, this misconception was historically inevi-

table. At that time, the authority of classical physics was so indisputable that if Newtonôs theory of gravity had not followed 

from GTR in the non-relativistic limit, the new theory would not have been accepted. 

 

Thus, the coefficient 8́G/c4 on the right side of Eq. (12) was introduced by A. Einstein in order to harmonize the dimensions 

of the two sides of this equation, and so that, under the condition of a weak gravitational field, the Poisson equation (1) would 

follow from Eq. (12). 

 

As a result, by the end of 1915, A. Einstein and D. Hilbert almost simultaneously obtained a general covariant equation 

connecting the metric characteristics of a local region of curved 4-dimensional space with the components of the stressïenergy 

tensor of matter 

 

Ὑ ὙὫ Ὕ .                                                                                                                                                      (14) 

 

It is forced, by connecting the right side of Eq. (14) with the phenomenological properties of unknown matter (terra incognita), 

A. Einstein introduced several problems into general relativity. 

 

The first problem of general relativity is due to the presence on the right side of Eq. (14) of the substance mass density ɟ with 

a voluntaristic dimension kg/m3 and with a dimensional constant G (NĿm2/kg3), which in principle cannot be introduced into 

a fully geometrized theory. 

 

Let us recall that kilogram (kg) is a subjective, phenomenological concept. Until May 20, 2019, one kilogram in the SI system 

was understood as the ñmassò of a platinum-iridium cylinder with a diameter and height of 39.17 mm (i.e., the international 



prototype of the kilogram), the weight of which corresponds to the weight of a cubic decimeter (liter) of distilled water at a 

temperature of 4 ÁC and an atmospheric pressure of 101.325 kPa at the latitude of Paris. It is obvious that the kilogram 

dimension is a purely voluntaristic concept and is in no way related to geometry. 

 

The gravitational constant is an extremely small value G = 6.67430(15)ẗ10ī11 m3Āsī2 kgī1, which is determined from the 

average mass density of the Earth. with a large relative error of ~10ī4, which has not been reduced for many decades. At the 

same time, the very density of the mass of our planet is determined by indirect (far from obvious) methods. There is also no 

certainty that the gravitational constant G is the same throughout the Universe, and that it does not change over time. 

 

An attempt to substantiate the value of the gravitational constant G was made in the Jordan-Brans-Dicke theory of gravitation 

by introducing a scalar potential ű interacting with the space-time metric. However, within the framework of this theory, G 

is not necessarily constant, but depends on the scalar field 1/Gĕű, which can vary in space and time. Despite the fact that this 

theory of gravity reduces to general relativity in the limiting case, a number of its predictions have not been confirmed in 

practice. In addition, this theory has an additional adjustable coupling parameter ɤ, which entails replacing one empirical 

constant with another. 

 

The second problem of GR is related to the possibility of violation of the nonlocal laws of conservation. The point is that 

conservation laws must have the form [8] 

 

π,                                                                                                                                                                           (15) 

 

whereas in a curved space the covariant derivative is equal to zero 

 

Ὕ ɻὝ ɻ Ὕ πȟ                                                                                                                                  (16) 

 

which differs from the conservation law (15) by the amount ɻὝ ɻ Ὕ .  

 

Indeed, the integral over a 4-dimensional volume ᷿Ὕ ὫὨɱ  is preserved only if the satisfied condition [9]  

 

Ѝ Ὣ π.                                                                                                                                                                     (17)                                                                            

 

Only for a locally inertial reference frame in which all Christoffel symbols are equal to zero (ɻ π), a full-fledged conser-

vation law is obtained ɳὝ ὝȾὼ π. 

 

GR apologists associated the violation of nonlocal conservation laws with the fact that the Einstein-Hilbert equation (14) is 

not complete, because it does not include the energy-momentum of the gravitational field tik itself, defined by such a pseudo-

tensor that: 

 

Ὣ Ὕ ὸ π.                                                                                                                                                  (18)      

 

One of the explicit types of pseudo-tensor tik is written in [8]: 

                                                                                                                                                                                          (19) 

ὸ
ὧ

ρφ“Ὃ
ςɻ ɻ ɻ ɻ ɻ ɻ ὫὫ Ὣ Ὣ ὫὫ ɻ ɻ ɻ ɻ ɻ ɻ ɻ ɻ  

                         Ὣ Ὣ ɻ ɻ ɻ ɻ ɻ ɻ ɻ ɻ Ὣ Ὣ ɻ ɻ ɻ ɻ Ȣ  

 

However, if the pseudo-tensor tik were included in the right side of Eq. (14), then, according to the logic of general relativity, 

this would mean that the curvature of space would be the source of its own curvature with infinitely complex consequences. 

In addition, it turned out that all types of pseudo-tensors tik are associated with problems such as the ñBauer paradoxò [9], 



because all known pseudo-tensors tik turn out to be non-zero even for a flat pseudo-Euclidean space, the metric of which is 

given in curvilinear coordinates. 

 

The problem of violation of the law of conservation of energy in general relativity is also present in another capacity. When 

a body falls into a black hole, its energy tends to infinity even when approaching the gravitational radius. 

 

A. Einstein realized that the right side of Eq. (14) is phenomenological in nature. There is an opinion in scientific circles that 

Einstein called the left side of this equation a ñMagnificent Palaceò and the right side a ñramshackle hut.ò Einstein himself 

and many of his followers repeatedly tried to geometrize the right-hand side of Eq. (14) by complicating the properties of 

space-time, considering, for example, space-time with torsion, or space with five (the theories of Kaluza and Klein) or more 

dimensions. 

 

All these works are associated with the program of ñcomplete geometrization of physicsò by William Clifford [10]. A review 

of various attempts to geometrize the right-hand side of the Einstein-Hilbert equation (14) can be found, for example, in [11]. 

 

However, many varieties of geometric-physics face other kinds of difficulties. For example, in non-Riemannian geometries, 

torsion and nonholonomic objects cannot be the reason for the long-term existence of stable vacuum formations, because 

torsion and local spin-torsion manifestations can only describe rotating (vortex-like) regions of vacuum that are soliton in 

nature, i.e. existing only as long as they move at a speed consistent with the ñelastic-plasticò properties of vacuum. 

 

The third problem of GR is the following. As noted by V.V. Karbanovsky, due to the symmetry of the tensors Ὑ Ὑ ,  

Ὣ Ὣ ,  Ὕ Ὕ   the Einstein-Hilbert differential equations (14) are reduced to a system of ten equations, but variable 

parameters (i.e. unknown quantities) in there are twenty of these equations 

 
Ὣ Ὣ
Ὣ Ὣ

Ὣ Ὣ
Ὣ Ὣ

Ὣ Ὣ
Ὣ Ὣ

Ὣ Ὣ
Ὣ Ὣ

   ʠ   

Ὕ Ὕ
Ὕ Ὕ

Ὕ Ὕ
Ὕ Ὕ

Ὕ Ὕ
Ὣ Ὕ

Ὕ Ὕ
Ὕ Ὕ

Ȣ                                                                                                  (20) 

 

Therefore, it is almost impossible to solve these equations without additional conditions and irremovable uncertainties. 

 

For example, let us consider the Friedmann-Lemaitre-Robertson-Walker metric (FLRW-metric), which is largely fundamental 

in modern astrophysics. 

 

Ὠί ὧὨὸ ὥὸ ὶὨ— ὶίὭὲ—Ὠ• ȟ                                                                                               (21) 

 

where Ὧ πȟρȟρ; 
a(t) ï ñscale factorò, intended for transition to the accompanying reference frame, depends on time t, which flows equally at 

all points of a homogeneous and isotropic universe, which has the properties of an ñideal fluidò with the same average mass 

density ɟ and pressure p everywhere. 

 

The stress-energy tensor at each point of such an ñideal fluidò: 

 

Ὕ

”ὧ π π π
π ὴ π π
π π ὴ π
π π π ὴ

Ȣ                                                                                                                                         (22)  

 

The FLRW-metric (21) is not a solution to the Einstein-Hilbert equation (14) in the classical sense of the word ñsolutionò. In 

fact, this metric is first constructed from the assumption that each local region of 4-dimensional space is a 3-pseudosphere 

with a radius a(t) depending on time. The equation of such a local 3-pseudosphere has the form 

 

Ὠὼ Ὠὼ Ὠὼ Ὠὼ Ὧὥὸȟ                                                                                                                              (23)                            



where  Ὧ πȟρȟρȢ      
 

Mathematical transformations of the 3-pseudosphere equation (23) lead to metric (21). 

  

Next, in order to find out how the volume of each 3-pseudosphere with radius a(t) can change within the framework of general 

relativity, the components of the metric (21) are substituted into the Christoffel symbols ɻ  (6). In turn, the values of the 

calculated symbols ɻ  are substituted into the Ricci tensor (5), and the resulting components of the Ritchie tensor are substi-

tuted into the Einstein-Hilbert equation (14). The result is a system of Friedmann equations 

 

ừ
Ử
Ừ

Ử
ứ ”ȟ             

ς ὴȟ

” Ὢὴȟ                                

                                                                                                                          (24)         

 

where ὥȟὥ ï are the first and second derivatives of the scale factor a(t); 

 

Eq. (14), and the Friedman equations (24) following from it, did not allow the possibility of describing a stationary Universe. 

Therefore, A. Einstein in 1917 took advantage of the property of covariant derivatives (7), in particular ᶯὫ π, and in 

article [12] he wrote down an expression with the lambda term ȿ, which transforms into the formula 

                                         

Ὑ ὙὫ ΏὫ Ὕȟ                                                                                                                                         (25)      

 

where ȿ is a constant called the ñcosmological constantò. 

 

When substituting the components of the metric tensor from the FLRW-metric (21) into Eq. (25), we obtain a system of 

Friedman equations with a lambda term 

 

ừ
Ử
Ừ

Ử
ứ ”ȟ             

ς ɤὧ ὴȟ

” ὪὴȢ                                             

                                                                                                               (26)    

 

Since systems (24) or (26) have two equations, and in the first case there are three unknowns: ὥὸȟ” ÁÎÄ  ὴ in the second 

case there are four unknowns ὸȟ”ȟὴ ÁÎÄ ɤ . Therefore, it is necessary to add additional equations, such as ” Ὢὴ or                  

ὴ Ὢ”ȟɤ, which are called ñstate equationsò. There can be an infinite number of such equations of state, entered ñby handò. 
It should also be taken into account that k can take any of three values 0,1, 1. In addition, when solving differential Eqs.(24), 

integration constants arise, which are also eliminated voluntarily, because the boundary conditions in these problems are often 

undefined. 

 

The main problem, however, is that solutions to the Friedmann equations (26) in the presence of an additional equation of 

state ” Ὢὴ  will not be solutions to the Einstein equation (25). This ñhand-introducedò voluntaristic function changes the 

results of solving differential equations. The Friedmann system of equations (26) and the Einstein equation (25) completely 

coincide only in one case, if  ” π and  ὴ π,  i.e. if ʊ π. 
 

The fourth problem of GR is that the equality sign between the space curvature tensor Ὃ Ὑ ὙὫ  and the stress-

energy tensor of matter ʊ  suggests the possibility of formulating as a direct problem (i.e. determining the curved state of the 

space-time continuum with a known distribution and movement of matter), and the inverse problem (i.e., determining the 

distribution and movement of matter with a known curvature of the space-time continuum). Such a closed interdependence in 

the case of strong curvature of 4-space and high energy density of matter leads to insoluble uncertainties and contradictions. 

In other words, Eq. (14) and Eq. (25) are partly suitable only for the case of weak gravity and low energy density of matter. 



The 1983 Nobel Prize winner Subrahmanyan Chandrasekhar in [35] writes not about trust, but about faith in GR: ñFor the 

last twenty years, great efforts have been aimed at testing the lower orders of approximation of general relativity and Newto-

nian theory. These efforts were crowned with success, and the predictions of general relativity related to the change in the 

flow of time at points with different gravity, to the deflection of light rays expected when crossing the gravitational field and 

to the precession of Keplerian orbits and, finally, to the slowing down of the orbital period of binary stars in eccentric orbits, 

due to gravitational radiation, everything was confirmed within the limits of observation and measurement errors. But all 

these differences of GR in relation to the consequences of Newtonian physics amounted to several parts in a million. However, 

within the limits of a strong gravitational field, general relativity has not yet received unambiguous confirmation... Why then 

do we believe this theory? é our trust follows from the beauty of the mathematical description of nature that GR provides.ò 

Classical mechanics earned the trust of scientists and engineers after the work of Newton, Euler, and Laplace, showing its 

effectiveness in a variety of applications. In relation to GR, Chandrasekhar speaks only about faith [25]. L. Brillouin in [36] 

also expressed solidarity with this opinion: ñThe general theory of relativity is an example of a magnificent mathematical 

theory built on sand.ò 

 

The fifth problem of GR is the amazing uselessness of the Einstein-Hilbert equation (14) with the right-hand side not equal 

to zero (ʊ π) and with the dimensional proportionality coefficient .᷆ This greatest crown of human thought turned out to 

be practically useless. 

 

Firstly, the possibility of applying Eq. (14) is strongly limited by the extremely small value of the Einstein constant                                        

  = 8́ G/c4 å 2,07665 10ï43 s2/(kg m) = Nï1, since in this case the curvature of space begins barely manifest in the presence of 

enormous energy densities. 

 

Secondly, only the vacuum equations Ὑ π  and  Ὑ ɤὫ π  for  ʊ π can be strictly solved. The presence of 

matter parameters in solutions of vacuum equations is always ephemeral, i.e. they are introduced by "hands" in the form of 

fitting parameters or material equations of a phenomenological nature. This is the case when determining the additional peri-

helion shift of Mercury's orbit, and when estimating the deflection of a ray of light in the gravitational field of the Sun and 

when solving Friedman's equations. In the first two cases, the Schwarzschild metric is used (i.e. solution of the vacuum 

equation), describing the curvature of an empty space-time continuum, and the mass of the Sun is inserted into this metric 

"manually" as a correction factor. 

 

On the contrary, Einstein's vacuum equations do not have dimensional constants on the right side, so they find many applica-

tions in various branches of knowledge. For example, A. Einstein himself and his student Nathan Rosen in 1935 proposed to 

consider an electron as a merger of two pico-scopic ñblack holesò, which are described by stitching together two Schwarz-

schild metrics. This idea turned out to be untenable, but the Einstein-Rosen ñbridgesò (i.e., ñwormholesò) still remain the 

focus of attention of scientists, because they open up the possibility of interstellar and intergalactic travel, as well as time 

travel, as suggested by the groups of Kip Thorne and Igor Novikov. 

 

In addition, ñstrong gravityò was developed in the works of several theorists, including Abdus Salam and Erasmo Recami 

[13,14,15,16,17,18,19,20]. This line of research emerged in the 1960s as an alternative to quantum chromodynamics (QCD). 

The hypothesis of the existence of ñstrong gravityò led to an attempt to explain the problem of quark confinement using the 

ñhadron bagò model (i.e., the de Sitter microverse). In this case, the hadron radius was determined by the micro-cosmological 

constant. 

 

Also, under the assumption of the presence of strong gravitational interaction, analogies between hadrons and black holes of 

the Kerr-Newman type are described. This approach also did not lead to positive results, but in string theory there is a close 

connection between gauge forces and the geometry of spacetime. In some cases, string theorists recognize important analogies 

between theories based on Einstein's general theory of relativity and Yang-Mills gauge theory (in particular, quantum chro-

modynamics (QCD) and the theory of electroweak interactions by S. Glashow, S. Weinber and A. Salam). 

 

There are studies that show that with simplifications corresponding to Riemann geometry, the nonlinear equations of the 

Yang-Mills theory are reduced to the form of Einsteinôs vacuum equations [21]. 

 



Other applications of Einstein's vacuum equations are the description of gravitational lenses and gravitational waves, for 

which the LIGO and VIRGO collaborations were awarded the Nobel Prize in Physics in 2017. 

 

The sixth problem of GTR is the presence of singularities (i.e., tendencies to infinity) in solutions to the Einstein-Hilbert 

equation (14) (more precisely, in solutions to Friedmann equations (24) and (26)). The same problem remains in solutions of 

Einstein's vacuum equations. When the Schwarzschild metric was published, the scientific community (starting, apparently, 

with a discussion in the ñColl¯ge de Franceò, which took place in 1922 with Einstein, Hadamard, Painlev®, Becquerel, Bril-

louin, Cartan, Langevin and others scientists) were very worried about the presence of a singularity in it. Many attempts have 

been made to get rid of this problem by moving to other reference systems, but without success. Gradually they got used to 

singularities, or rather, some of them were hidden in the distant past, some in the distant future, and the rest were drowned in 

the bottomless depths of black holes, hiding behind the ñprinciple of cosmic censorshipò of Roger Penrose [22]. Nevertheless, 

the problem remained along with the understanding that the presence of singularities in any theory is a clear indicator of its 

incompleteness. 

 

The seventh problem is related to time loops. Einstein's collaborator at the Institute for Advanced Study, Kurt Gºdel in [23] 

obtained an exact solution to Eq. (25), allowing the existence of closed time-like lines. This solution is generated by the stress-

energy tensor ʊ , which is the matter density of uniformly distributed rotating dust particles. Gºdel's solution is expressed as 

a metric tensor in the local coordinate system 

 

Ὠί  ὧὨὸὩὨᾀ Ὠὼ Ὠώ Ὡ Ὠᾀ ,          

 

where Њ ὸȟὼȟώȟᾀ Њ;          

ɤ is a non-zero real constant representing the angular velocity. 

 

In this case, the principle of causality is violated. If a closed time-like line returns to the same point from which the movement 

was started, then it describes an arrival at the same ñtimeò that has already ñbeen.ò Moreover, for the researcher who observed 

this line, time is not zero. Thus, we get a closed chain of causes and effects along this line. 

 

Einstein was alarmed by the presence of this Gºdel solution, he noted [24]: ï ñIt would be interesting to find out whether such 

decisions should perhaps be excluded from consideration on the basis of physical considerations.ò However, this solution of 

Eq. (25) in itself with a non-zero the stress-energy tensor (ʊ π), leading to a cosmological model of a rotating Universe, 

does not cause rejection. The problem is the many paradoxes associated with the possibility of time travel. We now know 

about Edward Lorenz's ñbutterfly effectò and understand that the slightest change in the past can completely change the future. 

Hence the hypothesis about the security of chronology, proposed by Stephen Hawking. Letôs note, however, that mental (i.e., 

disembodied, purely observational) presences in the past and future are not prohibited. Paradoxes are associated with the 

transfer into the past of a material body that can change the course of history by a small impact. In other words, if traveling 

to the future or the past is still possible, then most likely without the transfer of matter there, i.e. at ʊ = 0. 

 

The eighth problem of GR is related to the illusory nature of matter. V. Karbanovsky, referring to Taimurazov, noted that 

within the framework of Riemannian geometry, by choosing the gauge function Ὤ  one can always reset to zero the curva-

ture tensor in a local region of curved space 

 

Ὑ Ὤ  = 0. 

 

That is, in any local region of curved space it is always possible to switch to a tangent coordinate system and ensure that the 

Riemann-Christoffel curvature tensor Ὑ , and therefore the Ritchie tensor Ὑ , are equal to zero in this small region. 

 

Letôs recall that the main theorem of Riemannian geometry says: ñBy definition, every Riemannian space in the infinitesimal 

coincides with Euclidean space up to small 1st order (with respect to differentials) coordinates.ò It turned out that between 

the Riemannian space R and the Euclidean space tangent to it in the neighborhood UA of some point A it is possible to establish 

such a correspondence in which both spaces will coincide up to small ones above the 2nd order. To do this, in Riemannian 

space, geodesics are drawn from point A in all directions and each of them in the tangent space EA is compared with a ray of 

the corresponding direction, and then a correspondence between these geodesics and rays is established such that the lengths 



of the arcs of the geodesics and the corresponding rays are equal. In a sufficiently small area of point A, such a correspondence 

will be one-to-one, and this is what we are looking for. Namely: if we introduce Cartesian coordinates x1,..., xn in the tangent 

space and assign their values to the corresponding points of the neighborhood UA, then the following connection will take 

place between the linear elements ds of the Riemannian and ds0 of the Euclidean spaces: 

Ὠί Ὠί Ὠί В Ὑ ὼ ὼ ὼ ὼ ὨὼὨὼ В ‐ ὼ ὼ ὼ ὼ ὨὼὨὼ,                                                                

where emlki  0  for  ʭi  ʭiɸ , i = 1,2,3én ; 

 

Ὑ Ὣ
Ὠɻ

Ὠὼ

Ὠɻ

Ὠὼ
ɻ ɻ ɻ ɻ  

 

is the Riemann-Christoffel tensor, which characterizes the difference between Riemannian space and Euclidean space.  

 

Local zeroing of the Riemann-Christoffel curvature tensor according to the logic of general relativity means that there is no 

matter in this region, and cannot be, because the equations are tensor. Thus, by choosing the gauge function h^mkl (or selecting 

a local coordinate system), it is possible to achieve that in the neighborhood of a small region, Eq. (14) is reduced to an 

equation of the form 

 

π Ὕ   ʠʣʠ  ʊ πȢ 

 

Thus, the logic of general relativity allows for local zeroing of the energy density (or matter density). At the same time, the 

tensor nature of Eq. (14) suggests that if matter is illusory in one local reference system, then it must be illusory in all other 

reference systems associated with a given local region. 

 

In a dynamic system on extremals, the increment of action is determined by the expression dS = Hdt, however, if the action 

does not change with time variation, the Hamiltonian H must be equal to zero [25]. The equality to zero of the Hamiltonian 

manifests itself in any system that is invariant under a change of time variable. In particular, in the general theory of relativity, 

the principle of general covariance allows any transformation of variables, including time, therefore the energy of any system 

in general relativity is exactly zero [25]. Not only energy as a whole, integrally, but also energy density at any point and at 

any moment in time. This phenomenon is described in detail in the monograph by Misner, Thorne & Wheeler [26]:                          

H(Ὣ ) = 0, i.e. E = 0. 

 

Since in classical physics time is completely defined, energy in the general case is not equal to zero, then general relativity 

with a non-zero material right-hand side cannot, in any limit, pass into classical physics. In classical physics, the development 

of the World takes place in global time and any generalization of classical mechanics must contain this time [25]. 

 

In geometrodynamics, the expanding cosmological model is associated with the density of matter only as a parameter, and in 

general there are solutions without matter (i.e. ʊ  0). The rigid link between the density of matter and the rate of expansion, 

described by the Hubble parameter, is the result of the requirement that the total energy of matter and the energy of dynamic 

space be equal to zero. This condition, as is known, is not satisfied 5ï25 times. It was to eliminate this enormous contradiction 

between observations and predictions of general relativity that ñdark energyò was introduced into consideration [25]. 

 

The ninth problem of ñglobal timeò is closely related to the above. The violation of general covariance with the introduction 

of global time associated with any matter (for example, with the ether) is due to the selection of a global reference system. 

The solution to this problem faced the need to select the mechanical properties of the ether so that the laws of interaction of 

bodies and the electromagnetic field with the ether do not depend on the speed of their movement. It turned out that the state 

of rest of the ether cannot be observed [25]. Within the framework of general relativity, at each point of the curved space-time 

continuum, local (proper, or true) time flows in its own way depending on the zero components of the metric tensor                 

Ὠ† ὧ Ὣ  Ὠὸ. Related to this are problems of synchronizing processes in various regions of curved space, as well as 

problems with defining the concept of energy in general relativity, since energy, from the point of view of mathematical 

physics, is a quantity that is conserved due to the homogeneity of time. 

 



At the same time, it is obvious that the consistency of many natural phenomena is subject to the flow of a single global time, 

as is the case in classical post-Newtonian physics and in the ȿCDM standard cosmological model, in which the same global 

time flows throughout the Universe. However, there is no generally accepted answer to the question: ñHow does local time 

in the gravitational field of stars and planets agree with the universal time of the ȿCDM model?ò Cosmologists say that 

galaxies, along with stars, are frozen into space that expands over time. But there is no answer to the question: ñHow are the 

gravitational fields of planets, stars and galaxies with their local times linked with the expanding interstellar space with global 

time? This is a problem, since metrics can only be correctly stitched together with synchronous time at the point of their 

contact. Despite the fact that many attempts have been made to construct a theory of gravity with violation of general covar-

iance through the introduction of global time, this problem has not been solved to date. 

 

The geometrodynamics of Wheeler, Arnovitt, Deser and Misner [26, 27], without additional conditions for time and without 

the condition that the Hamiltonian is equal to zero, encountered difficulties in that the fundamental static solutions of general 

relativity: the Schwarzschild metric, the Reissner-Nordstrºm metric, the Kerr metric turned out to be not representable in 

dynamic form relative to global space-time [25]. 

 

The tenth problem of GR is related to the quantization of the gravitational field. Due to general covariance, the Hamiltonian 

in general relativity is equal to zero, so quantization turned out to be impossible [25]. An attempt to construct a quantum 

theory of gravity with a zero Hamiltonian led to the development of the theory of loop quantum gravity (LQG theory). This 

theory postulates that the structure of space-time consists of finite loops woven into an extremely thin fabric held together by 

various node connections, which is called a spin network. It is assumed that the cell size of the spin network is of the order of 

the Planck length 

 

ὰ
ᴐὋ

ὧ
ρȟφρφςρπ ὧάȢ 

 

One of the key parameters of loop quantum gravity is the quantized area operator A of a two-dimensional surface Ɇ, which 

has a discrete spectrum. Every spin network is an eigenstate of each such operator, and the area eigenvalue equals  

 

ὃ ψ“ ὰ ὮὮ ρȟ   

where all intersections i of the surface Ɇ with the spin network are summed up. In this formula 

ɔ ï Immirzi parameter; 

j i = 0, 1/2, 1, 3/2, ... is the spin associated with the link i of the spin network. The two-dimensional area is therefore "concen-

trated" in the intersections with the spin network. 

 

According to this formula, the smallest possible non-zero eigenvalue of the area operator corresponds to the link that carries 

the representation with spin 1/2. Assuming an Immirzi parameter of order 1, this gives the smallest measurable area of                   

~10ï66 cm2. 

 

The main role in quantum gravity is played by the uncertainty principle ЎὶЎὶ ὰ (where ὶ is the gravitational radius, r is 

the radial coordinate). From this principle it follows ὶ ὰ ὶϳ.  Letôs substitute ὶ into the Schwarzschild metric (i.e. into the 

solution of Einsteinôs vacuum equation Ὑ π), as a result we obtain 

 

Ὠί  ρɀ  ̒Ὠὸ
 ɀ 

 Ὠὶ ὶ Ὠq ίὭὲq Ὠj Ȣ                                                                                  

 

This shows that on the scale ὶ ὰ ρπ ὧά black holes should appear, i.e. spacetime must generate quantum foam from 

real and virtual black holes. 

 

Of course, we are trying here to explain the essence of loop quantum gravity at a primitive level. In reality, theorists are 

attempting to peer into the deep structure of the void by representing the null Hamiltonian of the vacuum (H = 0) through the 



introduction of Asteker variables and combinations of Lagrangian factors (i.e., conserved displaced connections) with the 

SU(2) gauge symmetry group, together with its closed an algebra that transforms into an algebra of Poisson brackets, from 

which follows a closed algebra of quantum operators. The result is a quantum model of empty space with deeply hidden 

divergences. All this complex mathematics complements the standard cosmological model, based on the Friedmann equations, 

only on the scale of Planck lengths (ρͯπ  ÃÍ) and times (ͯρπ s), which are characteristic of the beginning of the Big 

Bang, or in the black hole singularity zone. 

 

However, modern technologies make it possible to experimentally test the dimensions of space at least ρπ  ρπ  cm. 

Therefore, today it is not possible to verify the theoretical predictions of loop quantum gravity. Despite the fact that a large 

number of research groups around the world are developing this theory, they have not yet been able to come close to practically 

significant results. 

 

Even the attempt to quantize Newton's classical theory of gravity encounters numerous difficulties. Quantum gravity turns 

out to be a non-renormalizable theory due to the fact that the gravitational constant is a dimensional quantity. In the system 

of units  = c =1, the gravitational constant G has the dimension of the inverse square of the mass. The situation is aggravated 

by the fact that direct experiments in the field of quantum gravity, due to the weakness of the gravitational interactions them-

selves, are not available to modern technologies.    

 

We note that the Algebra of Signatures described in [1,2,3,4] largely coincides with the mathematical basis of the theory of 

loop quantum gravity and the theory of superstrings, but without restrictions on the size of a section of space and the scale of 

the objects under study.    

 

The eleventh problem is that the GR claims that in the Newtonian limit it goes into classical physics, that is, the principles of 

general relativity should also operate in post-Newtonian mechanics, but the relativity of time is not observed in the non-

relativistic world. 

 

The twelfth, and perhaps the most basic, problem of general relativity is related to the fact that A. Einstein did not explain: 

ñHow does the mass of a body, its energy of motion and the pressure inside it bend the space-time continuum?ò To the 

question: ñHow does the force of gravity arise around a massive body?ò Newton replied: ñI do not feign hypotheses.ò Einstein 

replaced the effect of gravity with free movement by inertia in a curved space-time continuum, but the question of the mech-

anism for generating this curvature by massive bodies also remained unanswered. 

 

2] Conclusion of the analysis of general relativity problems 

 

The difficulties that researchers encounter when solving Einsteinôs equations for ʊ π are much greater, but the above 

analysis is enough to draw a general conclusion. Almost all problems of general relativity are related to the phenomenological 

right-hand side of Eqs. (14) and (25). 

 

In this regard, in this work we will use only the Einstein vacuum equation 

 

Ὑ ὙὫ ΏὫ πȟ                                                                                                                                                  (27) 

 

where ȿ can take the values +ȿ, ïȿ and ȿ = 0.                                                                                                               (28) 

 

3] Massless geometrophysics 

 

It is necessary not to lose sight of the situation when ʊ π  (i.e. there is no matter), but the Einstein tensor with the lambda 

term is not equal to zero 

 

Ὑ ὙὫ ΏὫ Ὃ πȢ                                                                                                                                         (29) 

 

For this matter-free case, we introduce conventional massless notation: 
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where 

Ὃ ὡ                                                              is temporary tension; 

Ὃ ʩὛ ȟ Ὃ ʩὛ ȟὋ ʩὛ                    is components of the velocity tension density vector; 

 

Ὃ ρ
ʩὛ ȟ  Ὃ

ρ
ʩὛ ȟὋ

ρ
ʩὛ      is components of the flux tension density vector; 

 

Ὃ  

Ὃ Ὃ Ὃ
Ὃ Ὃ Ὃ
Ὃ Ὃ Ὃ

 

„ „ „
„ „ „
„ „ „

  is components 3-dimensional spatial tension tensor.  

 

In this case, the massless tensor Ὃ π will be called the 4-tension tensor. 

 

Note that the rotational degrees of freedom, in particular the components of the torque density vector, are not taken into 

account in tensor (30). This is the result of simplifications related to the Riemannian approximation. 

 

Eq. (29) cannot describe stable vacuum formations, since it is impossible to integrate the non-zero tensor field (30) in a curved 

Riemannian space to ultimately obtain tensor results, because in the general case, similar to Ex. (16) 

 

ᶯὋ ɻὋ ɻ Ὃ Ȣ                                                                                                                             (31) 

 

Therefore, conservation laws do not work. This means that just by changing the reference system, you can change the energy 

of the metric-dynamic system and regulate the algorithm for the flow of intra-vacuum processes. For classical physics this 

sounds categorically unacceptable, but for psychophysics it is a typical phenomenon. For example, if in your mind you men-

tally form an image of delicious food, then this may be accompanied by real salivation, and a pleasant memory can increase 

or decrease blood pressure, etc. 

 

Mentally command your hand to rise, and it will rise. Thought is not material, but it forces matter to do work, i.e. brings 

energy into a material system. The opposite effects are also possible, for example, close your eyes and make 10 revolutions 

around your axis in a safe place, open your eyes, and you will see that the reference system associated with your consciousness 

is rotating. These are obvious facts. It is clear that the nervous system transmits a command to contract or relax muscles. But 

it remains a mystery how the nervous system itself receives a command from thought, which can only form illusory images, 

i.e. distort local coordinate systems ñfrozenò into our consciousness? 

 

Equation (29) may be needed when considering how to introduce additional energy into the system by mentally changing the 

coordinate system and/or reference frame. It is possible that to solve psychomotor problems, Riemannian geometry will not 

be enough, and it will be necessary to obtain MAP-spacemetry equations (Figures 1b and 2b). However, when simplified, 

these equations must still be reduced to the equations of Riemannian geometry. 

 

We demonstrate this using the example of Riemann-Cartan geometry with absolute parallelism. The Riemann-Christoffel 

curvature tensor in this geometry is identically equal to zero [28] 

Ὑ ὗ Ὑ ὑ Ƞ ὑ Ƞ ὑ ὑ ὑ ὑ ḳπȟ                                                                                         (32)      

where 

Ὑ   is Riemann curvature tensor;  

ὑ ὗ ὗ ὗ  is contortion tensor;                                                                                                           (33)      

ὑʘ Ὣʘὑ ;                                                                                                                                                                                     

ὗ ɻ ɻ   is torsion.                                                                                                                                       (34)      



Identity (32) means that in a geometry with absolute parallelism, the components of the Riemannian curvature tensor Ὑ  

turn out to be completely compensated by torsion. Moreover, in this geometry, based on the variational principle, the Einstein-

Cartan equation is obtained [28] 

 

Ὑ ὙὫ ȿὫ ὣ ȟ                                                                                                                                           (35)      

      

where 

ὣ ὑὑ ὑ ὑ ὑ ὑ ὑ ὑ Ὣ ὑὑ ὑ ὑ   is Cartan-Schouten tensor;               (36)      

 

ὑ ςὗ ὗ
  
 is the trace of the contortion tensor.                                                                                                  (37)      

                                                                                                               

Eq. (35) looks as if the torsion of space, or rather rotational inertia, is the source of its curvature, or, conversely, the curvature 

of space leads to its torsion. 

 

However, Ex. (31) imposes a restriction on all extensions of Riemannian geometry, including Riemann-Cartan geometry.          

If   ὣ Ὃ π, then according to (31) this formally means that Eq. (35) cannot serve as conservation laws and cannot 

describe a stable vacuum formation. 

 

Therefore, to describe stable vacuum formations, the Einstein-Cartan equation (35) must break down into a system of two 

equations 

 

 Ὑ ὙὫ ΏὫ πȟ

 ὣ ὑὑ ὑ ὑ ὑ ὑ ὑ ὑ Ὣ ὑὑ ὑ ὑ πȢ
    

                                             (38)      

 

This does not contradict Eq. (35), since Ὃ π and ὣ π, therefore Ὃ ḳὣ π. 

 

It is important to note that in the Riemann-Cartan space, due to the asymmetry of the Christoffel symbols ɻ ɻ , the                

Ricci tensor also turns out to be asymmetric Rɛɜ Í Rɜɛ. But in the case with ȿ = 0 and Yɛɜ = 0, it follows from Eq. (27) that           

Rɛɜ = 0 and Rɜɛ = 0, so they turn out to be identically equal to Ὑ ḳὙ . This corresponds to such types of rotations and 

torsions of the vacuum that do not affect the Ricci tensor Rɛɜ, but they can affect the components of the curvature tensor Ὑ . 

It is similar to the fact that a certain volume of space rotates in relation to an external observer, but those who are inside this 

volume practically do not feel such rotation. For example, being on the surface of the Earth, it is very difficult to f                                                        

eel that it is rotating. However, there are effects that indicate the presence of inertial forces caused by the rotational motion of 

the planet, for example, deviations of the Foucault pendulum, different steepness of the left and right banks of rivers, etc. 

 

At this stage of the study, we are interested in stable vacuum formations, which are a simplified framework (foundation) for 

more subtle metric-dynamic effects, therefore it is important to formulate conservation laws within the framework of Rie-

mannian geometry. Einstein's vacuum equation (27) is suitable for this. 

 

Note that in Einsteinôs vacuum equation (27) there are no problems: neither with mass quantities with the heuristic dimension 

of kilogram, nor with the dimensional constant G, nor with conservation laws, since substituting Ὃ π  into the left side of 

Ex. (31), we have the coincidence of the covariant and ordinary derivatives 

 

ᶯπ ɻπ ɻ π πȢ                                                                                                                               (39)        

 

Einstein wrote [24]: ñThe gravitational equation for empty space is the only rationally justified case of field theory that can 

claim rigor.ò 

 

 

 



 

MATERIALS AND METHOD  

 

1 Vacuum equations and basic ontological principles 

 

1.1 Equation for constructing a metric-dynamic model of a stable vacuum formation 

 

The goal of ñGeometrized Vacuum Physics Based on the Algebra of Signatureò is the development of one of the main concepts 

of modern science associated with William Cliffordôs ñProgram for the Complete Geometrization of Physics.ò 

 

Another basis of the Algebra of Signature is the assertion that information is a fundamental concept in physics. According to 

John Archibald Wheeler's ñIt from bitò doctrine, all physical entities have an information basis (see [1], in particular Ä5). 

 

This article is the beginning of an attempt to create a fully geometrized cosmological model without involving the heuristic 

concept of matter, which has a voluntaristic dimension of the kilogram. 

 

To do this, we first build metric-dynamic models of single stable vacuum formations. 

 

Based on the analysis carried out in the introduction, we use the Einstein vacuum equation (27) for this task, 

 

Ὑ ὙὫ ΏὫ πȟ                                                                                                                                                 (27ǋ) 

 

where  

Ὑ
ɻ ɻ

ɻ ɻ ɻɻ   is Ricci tensor;                                                                                                     (5ǋ) 

 

ɻ Ὣ    is Christoffel symbols.                                                                                               (6ǋ)          

 

This equation acts as ten conservation laws. 

 

1.2 Einstein's first vacuum equation 

 

Let's consider Eq. (27) for ȿ= 0. 

 

Ὑ ὙὫ πȢ                                                                                                                                                              (40) 

 

Multiplying both sides of this equation by Ὣ , we obtain [8] 

 

Ὣ Ὑ ὙὫ Ὑ Ὑ πȟ                                                                                                                                  (41) 

 

since Ὣ Ὣ ὲ is the number of dimensions of space. 

 

For any n-dimensional space (except n = 2), Eq. (41) can only be satisfied for zero scalar curvature (R = 0). Therefore, for a 

4-dimensional space (i.e. for n = 4), Eq. (40) takes a simplified form [8] 
 

Ὑ π.                                                                                                                                                                             (42)           

 

The Ricci tensor (42), which is equal to zero, will be called Einsteinôs first vacuum equation. 

 

 

 

 



1.3 Einstein's second vacuum equation 

  

If ȿ is not zero, then we multiply Eq. (27) by Ὣ , as a result we obtain 

 

Ὣ Ὑ ὙὫ ȿὫ Ὑ Ὑ ὲȿ πȟ                                                                                                            (43) 

 

whence follows 

 

Ὑ ȿȟ                                                                                                                                                                      (44)     

 

in this case, Eq. (27) takes the form 

 

Ὑ ȿὫ πȢ                                                                                                                                                           (45) 

 

In the case of a 4-dimensional space: n = 4, R = 4ȿ, and Eq. (45) takes on the simplest (i.e. most optimal) form 

 

Ὑ ȿὫ πȢ                                                                                                                                                                 (46) 

 

Eq. (46) will be called Einstein's second vacuum equation. 

 

1.4 Geometric meaning of the constant ȿ 

 

Willem de Sitter showed in [24] that a 4-dimensional space can be defined as a conic section of a 5-dimensional single-strip 

hyperboloid, defined in a 5-dimensional space by the equation 

 

ʭ02 ï ʭ12 ï ʭ22 ï ʭ32 ï ʭ42 =  rk
2.                                                                                                                                       (47)  

     

The curvature tensor of such a 4-dimensional space has the form [29, 30] 

 

Ὑ Ὣ Ὣ Ȣ                                                                                                                                     (48)           

 

The Ricci tensor in this case is equal to [29] 
 

Ὑ Ὑ Ὣ    or   Ὑ ᶸ Ὣ πȢ                                                                                                             (49)                 

 

If you enter the designation 

 

ȿ  ,                                                                                                                                                                       (50)                    

 

then we get a system of equations 

 

 
ὙὭά ȿὯὫὭά πȟ               

ὙὭά ȿὯὫὭά πȢ                                                                                                                                             (51)             

 

which corresponds to Einstein's second vacuum equation (46). But in this case, the geometric meaning of the constant                      

L = Ñ3/rk
2 = const became clear, where rk is the radius of the 4-dimensional sphere. 

 

Such a 4-sphere has radii along three spatial axes XYZ equal to xk = yk = zk = rk, and along the fourth time axis the radius is 

equal to ctk = rk. 

        



That is, a given radius is associated with a period of time 

 

tk = rk /c.                                                                                                                                                                           (52) 

 

 

The scalar curvature in this case, according to Ex. (44), has the form                                                                                                                                                                                             

                                                                                                                                                                                               

Ὑ Ὣ Ὑ τȿ  Ȣ                                                                                                                                           (53) 

 

The scalar curvature turned out to be proportional to the 12 signs of the Zodiac (i.e., the 12 sectors of the zodiac belt). Zodiac 

(from the Greek ɕ₠ɞɜ ï ñliving beingò). 

 

1.5 Epistemological and ontological principles 

 

Einstein included several important ideas in Eq. (27) in the form of fundamental epistemological principles: 

1) The principle of general covariance (i.e., the independence of the form of the equation and invariants from the choice of 

coordinate system or reference system; in essence, the tensor nature of the equations); 

2) The principle of coordinate invariance (i.e., the independence of the laws of physics from the choice of coordinate system); 

3) The principle of equivalence (i.e. local curvatures, movements and accelerations are put in correspondence with local 

reference systems). The concept of ñinfluence of forceò has been replaced by inertial movement in curved space-time; 

4) The principle of independence of the speed of light from the reference system (i.e., the unification of space and time into a 

single space-time continuum with a metric of the form ds2 = ï ʩ2dt2 + dx2 +dy2+ dz2 = 0); 

5) The principle of causality (i.e. any event can have a causal impact only on those events that occur later than it, i.e. inside a 

circle with a radius of no more than l = ʩdt, where dt is the time interval between events); 

6) The principle of extremum of action (i.e. the geodesic lines of a curved 4-dimensional space are extremal). 

7) The principle of symmetry (i.e., the conditions of non-variability, from which conservation laws follow). 

8) The principle of relativity (i.e., the equations include only relative quantities, including time). 

 

Thus, Einsteinôs vacuum equation (27) turned out to be the quintessence of the entire empirical-epistemological heritage 

acquired by science by the beginning of the 20th century, i.e. by the time of the creation of GR. 

 

However, these epistemological principles are not enough to use vacuum equations (27), (42) and (46) to construct metric-

dynamic models of stable vacuum formations. Therefore, we will formulate three more fundamental ontological principles of 

the Algebra of Signatures, which are taken from empirically verified philosophical and religious sources. 

 

1] Principle of ñAbsolute Absenceò: ï ñEverything that can appear from emptiness appears in mutually opposite form, so that 

on average the emptiness remains empty.ò From the principle of ñAbsolute absenceò follows the condition of ñvacuum bal-

anceò, which was used in all previous articles of the proposed project [1,2,3,4]. 

 

2] The principle of ñFair distributionò: ï ñIf something can be realized with a certain probability, then it is necessarily realized 

in a proportion tending to this probability.ò From the principle of ñFair distributionò, in particular, it follows that all possible 

solutions to the vacuum equation must be taken into account with the appropriate probability. 

 

3] The principle of ñAbsence of the finiteò: ï ñContinuum INFINITY cannot generate the finite, but from the Continuum it is 

permissible to generate a discrete closed Infinity.ò From this principle it follows that all metric-dynamic models of stable 

vacuum formations must be discrete-infinite. 

 

The following question remains open: ï ñIf Ὕ π  (i.e. if on the right side of the Einstein-Hilbert equations (14) there are 

no: density of matter, its motion, pressure and electromagnetic field), then what fills the Universe, and what is source of 

curvature of the space-time continuum? The answer to this question will be gradually formed below, but now we can answer: 

ñAccording to the Algebra of Signatures, this world consists of many stable corpuscular vacuum formations of various scales.ò 

At the end of this article, Einstein's third vacuum equation is proposed, with the help of which in subsequent articles the 

corpuscular cosmological model will be presented and answers to many other questions of modern physics will be given. 



1.6 Effect of the principles of ñAbsolute absenceò and ñFair distributionò 

 

Let us demonstrate the effect of the principles of ñAbsolute Absenceò and ñFair Distributionò using the example of the Fried-

mann-Lema´tre-Robertson-Walker metric (FLRW-metric) (21). There are four main (non-trivial and non-exotic) cases possi-

ble at Ὧ ρ and  Ὧ ρ with signatures    and      
 

Ὠί ὧὨὸ Ὡ 
¡ 

 ὶὨ— ὶίὭὲ—Ὠ• ȟ                                                                                        (54)                                                      

Ὠί ὧὨὸ Ὡ 
¡ 

 ὶὨ— ὶίὭὲ—Ὠ• ȟ                                                                                           (55) 

Ὠί ὧὨὸ Ὡ 
¡ 

 ὶὨ— ὶίὭὲ—Ὠ• ȟ                                                                                      (56)       

Ὠί ὧὨὸ Ὡ 
¡ 

 ὶὨ— ὶίὭὲ—Ὠ• ȟ                                                                                        (57)   

 

where  ὥὸ Ὡ 
¡ 

 Ȣ  
 

Averaging all these metrics leads to a zero (trivial) metric 

  

Ὠί Ὠί Ὠί Ὠί Ὠί  = 0Āʩ2dt2 + 0Ādr2 + 0Ādq 2 + 0Āsin2qdj2 = 0.                            (58)            

 

This corresponds to the principle of ñAbsolute absenceò, from which the condition of vacuum balance follows. 

 

Averaging metrics (54) and (55) over pairs, as well as metrics (56) and (57), we obtain 

                                                                                                                                                                                          (59)            

Ὠί Ὠί  Ὠί ὧὨὸ
Ὡ 
ςὧὸ¡ 

 ὶ  Ὡ 
ςὧὸ¡ 

 ὶ

ς
 ὶὨ— ὶίὭὲ—Ὠ•  with signature     

 

Ὠί Ὠί Ὠί ὧὨὸ
 
¡ 

  
 
¡ 

 
ὶὨ— ὶίὭὲ—Ὠ• ×ÉÔÈ ÓÉÇÎÁÔÕÒÅ   

 

where    
 
¡ 

  
 
¡ 

 
ÃÈ

¡ 

 
Ȣ                                                                                                                                     (60)            

 

In this case, averaging metrics (54) and (57) over pairs, as well as metrics (55) and (56), we obtain 

 

Ὠί Ὠί  Ὠί
Ὡ 
ςὧὸ¡ 

 ὶ  Ὡ 
ςὧὸ¡ 

 ὶ

ς
 ὶὨ— ὶίὭὲ—Ὠ•  with signature π                (61)            

 

Ὠί Ὠί  Ὠί
Ὡ 
ςὧὸ¡ 

 ὶ  Ὡ 
ςὧὸ¡ 

 ὶ

ς
ὶὨ— ὶίὭὲ—Ὠ•  with signature  π    

 

where   
 
¡ 

  
 
¡ 

 
ίÈ

¡ 

 
Ȣ                                                                                                                     (62) 

 

Within the Algebra of Signatures, the averaged metrics (59) ï (62) (describing the metric-dynamic state of the ñexternalò and 

ñinternalò sides of the vacuum, respectively) define a cosmological model, which will be consistently presented in subsequent 

articles of this project. 

 

 

 



2 Solutions of Einstein's first vacuum equation 

 

2.1 Set of metrics-solution of the first vacuum equation 

 

Let's find exact solutions to Einstein's first vacuum equation (42) 

 

Ὑ π.                                                                                                                                                                            (42ǋ) 

                                                                                                                                                                       

This equation is considered in many scientific publications on modern differential geometry and general relativity, for exam-

ple, in [8, 19, 31, 37]. However, none of the books and articles known to the author shows the complete set of solutions to 

this equation, or discusses the relationship between these solutions. Therefore, we repeat the solutions to Eq. (42) in sufficient 

detail. 

 

At the same time, this chapter will demonstrate the general methodology of multilayer geometrized vacuum physics based on 

the Algebra of Signature. 

 

At this stage of the study, we are interested in stable curvatures and stable vacuum formations, so we will look for stationary 

(i.e., time-independent) solutions. 

 

Solutions to Eq. (42) for the stationary case are sought in the spherical coordinate system (ʭ0, ʭ1, ʭ2, ʭ3) = (ct, r,q, j)  in the 

form of metrics: 

 

ds(ï)2 = ʝnʩ2dt2 ï ʝldr2 ï r2(dq 2 + sin2q dj2)  with signature (+ ï ï ï),                                                                             (63) 

     

or 

 

ds(+)2 = ï ʝnʩ2dt2+ ʝldr2+ r 2(dq 2 + sin2q dj2) with signature (ï + + +),                                                                          (64)    

 

where n  and  l  are the desired functions t and r. 

 

In metric (63), the nonzero components of the metric tensor are equal to 

 

Ὣ  = ʝn,      Ὣ  = ï ʝ l,       Ὣ  = ï r2,       Ὣ  = ï r2 sin2q,                                                                                              (65) 

 

and their contravariant components are equal     

 

Ὣ  = ʝ ï n,    Ὣ  = ï ʝ ï l,    Ὣ  = ï r ï 2,    Ὣ  = ï r ï 2sinï 2q.                                                                                         (66)       

  

Substituting time-independent components (65) and (66) into Christoffel symbols (6). Next, substituting the obtained ɻ  into 

the Ricci tensor (5), as a result, for the stationary case, three equations are obtained [8]: 

 

n  = ï l,                                                                                                                                                                               

 

n¡¡ + n¡2 + 2n¡/r = 0,                                                                                                                                                           (67)                      

 

ʝ ïl (n ¡/r + 1/r2) ï 1/r2 = 0,                                                                                                                                                (68)                                          

  

ʝ ïl (l¡/r ï 1/r2) + 1/r2 = 0.                                                                                                                                                 (69)                                                                                                                                    

 

Differential equation (67) has three solutions: 

 

n1 = ln(h1+ h2/r),   n2 = ln(h1 ï h2 /r),     n3 = h3,                                                                                                                (70)                                               

 



where h1, h2, h3 are integration constants. This can be verified by directly substituting each of these solutions into Eq. (67). 

 

Eqs. (68) and (69) also has three solutions: 

 

ʝ ï l = ʝn = (1+ r0/r),      ʝ ï l = ʝn = (1 ï r0/r),       ʝ ï l = ʝn = 1,                                                                                           (71)                  

     

where r0 is the integration constant. 

 

For h1 = 1,  h2 = r0  and  h3 = 0, solutions (70) and (71) turn out to be the same for both differential equations (68) and (69). 

 

Substituting three possible solutions (71) into metric (63), we obtain three metrics with the same signature (+ ï ï ï): 

 

ί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                                 (72)       

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                               (73)     

Ὠί ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                                                        (74) 

                                                                                             

where r0 is the radius of the sphere, the meaning of which will be clarified below. 

 

Performing similar operations with the components of the metric tensor from metric (64), 

 

Ὣ  = ï ʝn,       Ὣ  = ʝ l,        Ὣ  = r2,        Ὣ  =  r2 sin2q,        
                                                                                          

and their contravariant components 

  

Ὣ  = ï ʝn,       Ὣ  = ʝ l,        Ὣ  = r2,        Ὣ  =  r2 sin2q,                                                                                                 

 

we obtain three more metrics that satisfy the first vacuum equation (42), but with the opposite signature (ï + + +): 

 

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                              (75)       

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                              (76)     

Ὠί ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰Ȣ                                                                                                        (77)                   

 

Note that at r0 = 0, metrics (72) and (73) become metric (74), and metrics (75) and (76) become metric (77). 

 

All metrics (72) ï (77) satisfy the first vacuum equation (42), but only the quadratic form (72) is called the Schwarzschild 

metric, provided r0 = rg = 2Gʄ /c4 (where M is the mass of the star or planet). 

 

 

2.2. Additional solutions to the first vacuum equation 

 

In addition to the well-known metric solutions (72) ï (77), there are six more metric-solutions to Einsteinôs first vacuum 

equation (42). To find these solutions, it is necessary to take advantage of an additional opportunity that was left unattended. 

Instead of the original metrics (63) and (64) with metric tensor components 

 

Ὣ  = ʝn,  Ὣ  = ï ʝ l     or     Ὣ  = ï ʝn,  Ὣ  = ʝ l 

 

we will start from metrics with components of the metric tensor 

 

Ὣ  = ʝ ïn,  Ὣ  = ï ʝ ï l    or    Ὣ  = ï ʝ ï n,  Ὣ  = ʝ ï l 



 

That is, we will look for solutions to Eq. (42) in the form 

 

ds(ï)2 = ʝ ïnʩ2dt2 ï ʝ ïldr2 ï r2(dq 2 + sin2q dj2)  with signature (+ ï ï ï),                                                                       (78)      

 

or 

 

ds(+)2 = ï ʝ ïnʩ2dt2+ ʝ ï ldr2+ r 2(dq 2 + sin2q dj2) with signature (ï + + +),                                                                    (79)        

   

In this case, performing actions similar to (65) ï (69) we obtain four equations 
 

l = ïn,                                                                                                                                                                             (80)                                                                                                                                                                             

 

ʝl (n ¡/r + 1/r2) ï 1/r2 = 0,                                                                                                                                                 (81)                                          

  

ʝl (l¡/r ï 1/r2) + 1/r2 = 0.                                                                                                                                                 (82)   

 

Eqs.  (80) ï (82) also have three ñinvertedò solutions: 

 

e l = ʝ ïn = (1+ r/r0),      ʝ l = ʝ ïn = (1 ï r/r0),       ʝ ï l = ʝn = 1.                                                                                     (83)               

 

This statement can be verified by direct substitution of these solutions into Eqs. (80) ï (82). 

 

Solutions (83) are called ñinvertedò because instead of the ratio r0/r in solutions (71), there is an inverted ratio r/r0. 

 

Substituting three possible solutions (83) into the metric (79), we obtain three metric solutions to the first vacuum equation 

(34) with the same signature (+ ï ï ï):                                                                                                                                  

 

Ὠίz ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                                 (84)  

Ὠίz ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                                 (85)     

Ὠίz  ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰Ȣ                                                                                                         (86)                  

  

Similarly, substituting three possible solutions (83) into the metric (79), we obtain three more metric solutions to Eq. (42) 

with the opposite signature (ï + + +): 

 

Ὠίz ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                             (87)  

Ὠίz ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                             (88)     

Ὠίz  ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰Ȣ                                                                                                      (89)                  

 

 

As far as the author knows, these metrics have never been considered before. However, they are important, as will be shown 

below. 

 

There is another approach to proving the existence of ñinvertedò metrics (84) ï (89). Let us show this using the example of 

metric (72). Let us fix in the metric (72) the value of the variable ὶ ὶ ὧέὲίὸ  

 

Ὠί ρ ὧὨὸ
 
Ὠ ὶ  ὶὨ—  ὶίὭὲ—Ὠ‰ȟ                                                                               (90)       



In this case, for any π ὶ Њ, the metric (90) remains a solution to the first vacuum equation (42). In other words, if we 

consider r as a constant parameter (i.e., ὶ ὶ ὧέὲίὸ), and ὶ is considered as a variable value, then the metric is of the 

form 

 

Ὠί ρ ὧὨὸ
 
Ὠ ὶ  ὶὨ—  ὶίὭὲ—Ὠ‰ȟ                                                                                 (91)       

 

corresponding to the metric (84), is also a solution to the first vacuum equation (42). 

 

Similar actions can be performed to ñreverseò metrics (73), (75) and  (76) respectively into metrics (85) (87) and (88).  

 

 

2.3 Thirteenth solution of Einstein's first vacuum equation 

 

In Ä1, the fundamental principles of the Algebra of Signature were formulated: ñAbsolute Absenceò and ñFair Distributionò. 

We use these principles in relation to 12 solutions (72) ï (77) and (84) ï (89) of Eq. (42).  

 

Since there are no initial preferences, each of these metric decisions can be implemented with equal probability P = 1/12. 

According to the principle of ñFair distributionò, it is necessary to assume that all solutions (72) ï (77) and (84) ï (89) can be 

realized simultaneously with the appropriate probability. Therefore, we perform the averaging of these metrics, provided that 

their centers are combined at r = 0. As a result, we obtain a zero metric 

 

 (ds1
(+)2+ds2

(+)2+ds3
(+)2+ds1

(ï)2+ds2
(ï)2+ds3

(ï)2+ ds1*
(+)2+ds2*

(+)2+ds3*
(+)2+ds1*

(ï)2+ds2*
(ï)2+ds3*

(ï)2) =  

 

= 0Āʩ2dt2 + 0Ādr2 + 0Ādq 2 + 0Āsin2qdj2 = 0,                                                                                                                         (92)         

 

with metric tensor components Ὣ π. 
 

Metric (92) is the seventh (trivial) solution of the first vacuum equation 

(42), which can be easily verified by substituting Ὣ π into this equa-

tion, resulting in the identity 0 = 0. 

 

From Ex. (92) we can conclude that if metrics (72) ï (74) with signature 

(+ ï ï ï) describe the conditionally ñconvexò state of vacuum (Figure 2), 

and metrics (75) ï (77) with signature (ï + + +) describe its conditionally 

ñconcaveò state. Such stable vacuum formations can only appear if their 

centers are separated in space (Figure 2). Otherwise, they completely 

compensate for each other's manifestations. 

 

At the same time, even if the centers of the ñconvexò and ñconcaveò vacuum formations are in different places, they are 

completely canceled if averaged over the entire space. This advises the principle of ñAbsolute absence.ò 

 

2.4 Coordinate transformation 

 

According to Birkhoffôs direct theorem and Israelôs inverse theorem, there are no other exact spherically symmetric solutions 

to the first vacuum equation (42), except for metrics (72) ï (78), which at infinity tend to the Minkowski metric (i.e., to the 

metric of a flat pseudo-Euclidean space). 

 

However, in general relativity, due to the fact that Eq. (42) is generally covariant, there remain many possibilities for choosing 

other coordinate systems. Of particular interest are coordinate transformations that make it possible to exclude or shift the 

spatial singularity at  ὶ ὶ in metrics (72) ï (73) and (75) ï (76). 

 

For example, metric (75) can be represented in Kruskal-Szekeres coordinates 

 
 

Fig. 2: Two-dimensional illustration of ñconvex-

ityò and ñconcavityò separated in space 
     

 



 

Ὠίɀ  ɀ 
ȟ
Ὡɀ ȟȾ  ̒ὨόὨὺ ὶ όȟὺ Ὠq ίὭὲq Ὠj ȟ                                                                               (93) 

where ὶόȟὺ is a function that is implicitly defined by the equation ρɀ
ȟ
Ὡ
ɀ

ȟ

όὺ. 

 

Also, there is no spatial singularity when using Eddington-Finkelstein coordinates. In this case, the Schwarzschild metric (75) 

takes the form 

 

Ὠί
ɀ
  ɀρɀ  ̒Ὠὺ ςὨὺὨὶὶ Ὠq ίὭὲq Ὠj ȟ                                                                                        (94)       

 

where ὺ ὸ  ὶᶻȟ here ὶᶻ) for a collapsing spherical object (in particular a star); (ὶᶻ) for an expanding (exploding) 

spherical object; ὶᶻ ὶ ὶὰὲ ρ. In this case, the time-like singularity has shifted to the center (ὶ π) of the object 

under study. 

 

Georges Lemaitre proposed the following transformation of Schwarzschild coordinates { t, r} into coordinates {Ű, ɟ}  
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Ὠ† Ὠὸ
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                                                                                                                     (95)     

 

In these coordinates, for example, metric (72) takes the form 

 

Ὠί   ̒Ὠ†  Ὠ”  ” ὧ† ὶ Ὠq ίὭὲq Ὠj Ȣ                                                                          (96)      

 

In Lema´tre coordinates, the singularity also shifted to the middle of the spherically symmetrical object, i.e. to the point                     

r = 0. The Lema´tre metric (97) is synchronous, i.e. bodies stationary in Lema´tre coordinates are in a state of free fall to the 

central point. Vertically falling bodies reach the gravitational radius ” ὧ† ὶ and the center in a finite proper time. 

 

Allvar Gullstrand in [32] and Paul Painlev® in [33] showed that, for example, the metric (72) can be substituted not in a 

stationary form, but in a static form with a cross term 

 

Ὠί ρ ὧὨὸ ς ὨὸὨὶὶὨ— ὶίὭὲ—Ὠ‰Ȣ  

 

All solution metrics (72) ï (73) and (75) ï (76) of the first vacuum equation (42) can be represented in coordinates: Kruskal-

Szekeres coordinate; Eddington-Finkelstein coordinates; Lema´tre coordinates; Gullstrand-Painlev® coordinates; Isotropic co-

ordinates; Harmonic coordinates. 

 

Behind each of these coordinate systems lies a corresponding process that is subject to separate study, taking into account the 

methods of the Algebra of Signature, which will be partially outlined in the following paragraphs. 

 

Solutions of the first vacuum equation (42) are sorted into groups that are irreducible to each other. Metrics (72) ï (77) belong 

to different groups, and cannot be converted into each other by any change in the coordinate system. 

 

 

 

 

 



2.5 Subcont and antisubcont 

 

The main features of two-sided consideration of a 23-lm,n-vacuum are described in articles [1,2,3,4], 

 

In Ä7 of article [2] and in Ä4 and Ä5 of article [3], the conventional concepts subcont (short for ñsubstantial continuumò) were 

introduced to denote the outer 4-dimensional side of the 23-lm,n-vacuum, and antisubcont (short for from "anti-substantial 

continuum") to refer to the inner 4-dimensional side of the 23-lm,n-vacuum. These concepts are intended to create the illusion 

of two continuous environments, subcont and antisubcont (for example, ñwhiteò and ñblackò colors) for the purpose of con-

venience of perception of complexly intertwined intra-vacuum processes. 

 

We note once again that the concepts of subcont and antisubcont are mental (fictional) constructions of two continuous media, 

which are two 4-dimensional sides of the same extent of 23-lm,n-vacuum [1,2,3,4]. They look like two mutually opposite          

4-dimensional ethers (i.e., two elastoplastic media), respectively ñwhiteò and ñblackò in color. However, they should not be 

perceived as alternatives to two space-time continuums with opposite signatures (+ ï ï ï) and (ï + + +). Itôs just that in terms 

of intertwined continuous elastoplastic media it is much easier to explain the essence of intra-vacuum processes, which will 

be discussed below. 

 

In accordance with expression (70) in [3], metrics (72) ï (74) of the form Ὠί Ὣ ὨὼὨὼwith signature (+ ï ï ï) 

determine the metric-dynamic state of the outer side of the 23-lm,n-vacuum (i.e. subcont is a continuous medium of conven-

tionally ñwhiteò color); in this case, metrics (75) ï (77)  of the form Ὠί Ὣ ὨὼὨὼwith signature (ï + + +) deter-

mine the metric-dynamic state of the internal sides of the 23-lm,n-vacuum (i.e. antisubcont is a continuous medium of conven-

tionally ñblackò color) (see Ä4 and Ä5 in [3]). 

 

 

2.6 Application of the ñAbsence of the finiteò principle 

 

In Ä9 of article [2] it was shown that any pair of metric 4-spaces with mutually opposite signatures can be represented as a 

sum (or averaging) of 7 + 7 = 14 metric spaces with other signatures. 

 

For example, a conjugate (i.e., mutually opposite) pair of metrics ds(ï + + ï)2 and  ds(+ ï ï +)2  with opposite signatures (ï + + ï) 

and (+ ï ï +) can be expressed by summing (or averaging) 7 + 7 = 14 metric 4-spaces with signatures given in the ranking 

expression (54) in [2]: 

                                                                                                                                                                                         (99)                               

                                                                                                                                                                                                                                                                           

 

 

 

 

 

 

 

 

 

Recall that ranking expressions like (99) are a consequence of the vacuum balance condition (38) in [2]. 

 

Similarly, each mutually opposite pair of metrics with signatures (ï + + +) and (+ ï ï ï) from six solutions (72) ï (77) can be 

represented as a summation (or averaging) 7 + 7 = 14 metrics with signatures: 

 

 

 

 

                                                                                                                                                                                        (100)       

 (+  +  +  +) 

 (ï   ï  ï  +) 

 (ï   ï  +  ï) 

 (+  +  ï   ï) 

 (ï  +  ï   ï) 

 (+  ï  +   ï) 

 (ï  +  +   +) 

 (ï  +  +   ï)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(ï  ï   ï  ï) 

(+  +  +  ï) 

(+  +  ï  +) 

(ï  ï  +  +) 

(+  ï  +  +) 

(ï  +  ï  +) 

(+  ï  ï  ï) 

(+  ï  ï  +)+ 

= 0 

= 0              

= 0                                                              

= 0 

= 0 

= 0 

= 0 

= 0.               



 

 

 

 

 

 

 

 

 

 

For example, a mutually opposite pair of metrics (72) and (75) 

 

Ὠί  ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰   with signature (+ ï ï ï),       

                                                

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰   with signature (ï + + +)         

  

can be represented as a sum (or averaging) of 7 + 7 = 14 of the same metrics with components  

 

Ὣ  = (1ï r0/r),      Ὣ  = (1ï r0/r)ï1,       Ὣ  =  r2,       Ὣ  =  r2sin2q,                                                                                               

 

and signatures from rankings (100) 

                                                                                                                                                                                           (101)          

 

ds(+ + + +)2 =      Ὣ dx0
2 + Ὣ dx1

2 + Ὣ dx2
2 + Ὣ dx3

2       + 

ds(ï ï ï +)2 = ï Ὣ  dx0
2 ï Ὣ dx1

2 ï Ὣ dx2
2 + Ὣ  dx3

2      + 

ds(+ ï  ï +)2 =    Ὣ dx0
2 ï Ὣ dx1

2 ï Ὣ dx2
2 + Ὣ  dx3

2          + 

ds(ï ï + ï)2 =  ï Ὣ dx0
2 ï Ὣ dx1

2 + Ὣ dx2
2 ï Ὣ dx3

2       + 

ds(ï + ï ï)2  = ï Ὣ  dx0
2 + Ὣ dx1

2 ï Ὣ dx2
2 ï Ὣ dx3

2       + 

ds(+ ï  + ï)2 =    Ὣ dx0
2 ï Ὣ dx1

2 + Ὣ dx2
2 ï Ὣ dx3

2        + 

ds(+ + ï ï)2  =     Ὣ dx0
2 + Ὣ dx1

2 ï Ὣ dx2
2 ï Ὣ  dx3

2          + 

_____________________________________________________________________ 

ds(+ ï ï ï)2 =     Ὣ dx0
2 ï Ὣ dx1

2 ï Ὣ dx2
2 ï Ὣ dx3

2           + 

ds(ï ï ï ï )2  = ï Ὣ dx0
2 ï Ὣ dx1

2 ï Ὣ dx2
2 ï Ὣ dx3

2         = 0 

ds(+ + +  ï)2  =      Ὣ dx0
2 + Ὣ dx1

2 + Ὣ dx2
2 ï Ὣ dx3

2        = 0 

ds (ï + + ï)2 = ï Ὣ dx0
2 + Ὣ dx1

2 + Ὣ dx2
2 ï Ὣ dx3

2             = 0 

ds(+ + ï +)2   =     Ὣ dx0
2 + Ὣ dx1

2 ï Ὣ dx2
2 + Ὣ dx3

2         = 0 

ds(+ ï + +)2  = ï Ὣ  dx1
2+ Ὣ dx2

2 + Ὣ dx2
2 + Ὣ dx3

2            = 0 

ds(ï +  ï +)2 = ï Ὣ dx0
2 + Ὣ dx1

2 ï  Ὣ dx2
2 + Ὣ dx3

2            = 0 

ds(ï ï + +)2  =  ï Ὣ dx0
2 ï Ὣ dx1

2 + Ὣ dx2
2 + Ὣ dx3

2             = 0 

______________________________________________________________________ 

ds(ï + + +)2  =  ɀὫ  dx0
2 + Ὣ  dx1

2 + Ὣ dx2
2 + Ὣ dx3

2       = 0 

 

Summation (or averaging) in rankings (101) is performed by columns (see Ä9 in [2]) 

           

We explain with an example why in the case under consideration addition is equivalent to averaging. Let the denominators of 

rankings (101) indicate the average of the metrics in the numerator. In this case, the sum of the denominators themselves, 

according to the vacuum balance condition, is equal to zero 

 

 (Ὣ  dx0
2 ï Ὣ  dx1

2 ï Ὣ  dx2
2 ï Ὣ  dx3

2) +  (ɀὫ  dx0
2 + Ὣ  dx1

2 + Ὣ  dx2
2 + Ὣ  dx3

2) = 0.                                (102)    

     

Let's multiply both sides of this expression by 7. The result is the denominators in the rankings (101) 

  

(Ὣ  dx0
2 ï Ὣ  dx1

2 ï Ὣ  dx2
2 ï Ὣ  dx3

2) + (ɀὫ  dx0
2 + Ὣ  dx1

2 + Ὣ  dx2
2 + Ὣ  dx3

2) = 0.                                     (103)                  

 

In turn, conjugate (i.e., mutually opposite) pairs of 4-subspaces from rankings (101) can be decomposed in the same way into 

sums of 7 + 7 = 14 sub-subspaces, and this can continue indefinitely, if a complete "vacuum balance" is observed (i.e. if the 

sum of the entire infinite set of mutually exclusive metrics with different signatures is equal to zero). 

 

Thus, when solving the first vacuum equation (42), all three fundamental ontological principles of ñAbsolute absenceò, ñFair 

distributionò and ñAbsence of the finiteò are observed at once. 

 (+  +  +  +) 

 (ï  ï  ï  +) 

 (+  ï  ï  +) 

 (ï  ï  +  ï) 

 (+  +  ï  ï) 

 (ï  +  ï  ï) 

 (+  ï  +  ï) 

 (+ ï  ï  ï)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(ï  ï   ï  ï) 

(+  +  +  ï) 

(ï  +  +  ï) 

(+  +  ï  +) 

(ï  ï  +  +) 

(+  ï  +  +) 

(ï  +  ï  +) 

(ï  +  +  +)+ 

=0 

=0 

=0                                                  

=0  

=0 

=0 

=0 

=0 . 



2.7 Triads of metrics with different signatures 

 

Within the Algebra of Signatures there are additional opportunities to obtain stable vacuum formations. 

 

Let's show this using the example of metric (72) 

 

Ὠί  ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰  with signature (+ ï ï ï).    

 

This metric can be represented as a sum of three metrics with signatures presented in rankings (see Ä8 in [2]): 

                                                   

                                                                                             (104)           
 

 

 

 

For example, the first of three rankings (104) is revealed as follows 

 

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰     with signature (ï ï ï +)                                  (105)            

Ὠί     ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰     with signature (+ ï + ï)                                                                                               

Ὠί     ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰     with signature (+ + ï ï) 

_________________________________________________________________________________________ 

Ὠί     ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰     with signature (+ ï ï ï)                                                                                                     

Similarly, metric (75) 

 

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰  with signature (ï + + +):         

 

can be presented as a sum of three metrics with signatures presented in rankings:                                                                                                                                                                     

                                                                                                                                                                                        (106) 

   (+  +  +  ï) 

   (ï  +  ï  +) 

   (ï  ï  +  +)       

   (ï  +  +  +) + 

( +  +  ï  +) 

( ï  ï  +  +) 

( ï  +  +  ï) 

   ( ï  +  +  +) + 

( +  ï  +  +) 

( ï  +  +  ï) 

( ï  +  ï  +) 

  ( ï  +  +  +) + 

                                                                                      

For example, the first of three rankings (106) is revealed as follows 

Ὠί     ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰     with signature (+ + + ï)                                  (107)           

Ὠί  ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰    with signature (ï + ï +)                                                                            

Ὠί  ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰    with signature (ï ï + +)  

______________________________________________________                            _______ 

Ὠί  ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰    with signature (ï + + +) 

 

Any of the metrics with signatures (ï ï ï +), (+ ï + ï), (+ + ï ï) and (+ + + ï), (ï + ï +), (ï ï + +), which are in numerators 

of rankings (105) and (107) is not a solution to the first vacuum equation (42). This can be verified by substituting the 

(ï  ï  ï  +) 

(+  ï  +  ï) 

(+  +  ï  ï) 

  (+  ï  ï  ï) + 

( ï  ï  +  ï) 

( +  +  ï  ï) 

( +  ï  ï  +) 

  ( +  ï  ï  ï) + 

( ï  +  ï  ï) 

( +  ï  ï  +) 

( +  ï  +  ï) 

  ( +  ï  ï  ï) + 



components of the metric tensor from these metrics into this equation. However, the sum of triplets of metrics (105) and (107) 

is equal to either metric (72) with signature (+ ï ï ï), or metric (75) with signature (ï + + +), which describe, respectively, 

more complex stable ones: convexity of subcont and the concavity of the antisubcont. 

 

There are many combinations of 4-metrics with different signatures from the signature matrix (32) in [2] 

 

ίὭὫὲὨίȟ́   ,                                                                  (108) 

 

which in sum lead to the signature of the Minkowski space (i.e. subcont) (+ ï ï ï) and the signature of the anti-Minkowski 

space (i.e. antisubcont) (ï + + +). The possibility of application and meaning of these combinations will be revealed in sub-

sequent articles of the proposed project. 

 

 

2.8 Averaged metric-dynamic state of subcont 

 

2.8.1 Averaging subcont metrics 

 

Letôs separately consider three metrics (72) ï (74): 

                                                              

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                                (72ǋ)       

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                                (73ǋ)     

Ὠί ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ                                                                                                         (74ǋ)                 

           

which describe the metric-dynamic state of the outer side of the 23-lm,n-vacuum (i.e. subcont). 

 

The third metric (74) is a special case of the first two metrics (72) and (73) for r0 = 0, and describes the state of the original 

(i.e., uncurved) local section of the subcont. 

 

Both metrics (72) and (73) are solutions to the same vacuum equation (42) under the same conditions. There is no reason to 

prefer either of them, i.e. each of these metrics can be realized with probability İ. Therefore, following the principle of ñFair 

distributionò, we will consider the result of their averaging 

 

Ὠί Ὠί  Ὠί ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰                                                             (109)           

 

with averaged components of the metric tensor 

 

Ὣ

ở

Ở
ờ

ρ π

π  
π π
π π

π π
π π

ρ π
π ρỢ

ỡ
Ỡ
Ȣ                                                                                                                               

 

The zero component of the metric tensor in the averaged metric (109) is equal to one (Ὣ ρ), which means that time t is 

global. 

 

In a curved 4-dimensional space with a signature (+ ï ï ï), the distance between two events with different r, but with the same 

other coordinates, is determined by the integral [8] 



‚ ᷿ Ὣ ὨὶȢ                                                                                                                                                         (110)     

If  Ὣ = ï (1ï r0/r)ï1  from metric (72) or  Ὣ = ï (1+ r0/r)ï1 from metric (73) is substituted into integral (110), then such an 

integral cannot be taken in elementary functions. 

 

By substituting Ὣ  into the integral (110) from the averaged metric (109), it is possible to find an analytical solution 

 

᷿ ὶ ὶ
ὶ
ὶ .                                                                                                                                             (111)   

 

Averaging two solutions of the vacuum equation (42) with the same signature (+ ï ï ï) led to a meaningful result. 

 

Let's first find the size of the segment between the points r1 = 0  and  r2 = r0 : 

 

ὶ ὶ
ὶ
π

ὶ Ѝ ρὶ ὭὶȢ                                                                                                                 (112)                                                                                  

 

The length of this segment is equal to the radius of the cavity r0, and the imaginary nature of this result suggests that the 

averaged metric (109) does not describe the properties of the subcont inside a spherical cavity with radius r0. In other words, 

the domain of applicability of metric (109) starts from r0 and extends to r2 = ¤. In this case we have 

 

ὶ ὶ
Ð

ὶ Ð ὶ Ȣ                                                                                                                                            (113)      

 

If the studied subcont area were not deformed, then the distance between 

the points r2 = ¤ and r1 = r0 would be equal to  r2 ï r1 = ¤ ï r0, and in 

our case it is equal to value (113), subtracting one from the other, we 

find 

                                                                 

Ð ὶ Ð ὶ ὶ Ȣ                                                      (114)      

 

The result obtained shows that the subcont is compressed by an amount 

~ r0 in all radial directions, and the reason for such compression is due 

to the fact that it is ñdisplacedò from the cavity with radius r0. This looks 

like an air bubble in the liquid (Figure 3). 

                                                                 

2.8.2 Relative elongation of subcont 

 

We will judge the distortions of the subcontact region under study by its 

relative elongation (see expression (41) in [3]) 

 

ὰ ρ.                                                  (115)         

 

In this case, the relative elongation for each coordinate is determined by 

expressions (47) in [3] 

 

ὰ ρ ρȟ                                                                                                                                             (116)  

      

where 

 
 

Fig. 3: Air bubble in liquid 
    

 
Fig. 4: Graph of a function (117) ὰ   



Ὣ  are the components of the metric tensor of the curved section of the subcont. 

Ὣ  are components of the metric tensor of the same section of the subcont before curvature.  

 

Letôs substitute into Ex. (116) the components Ὣ  from the averaged metric (109), and the components Ὣ  from the origi-

nal metric (74), as a result we obtain 

   

ὰ ρ,       ὰ π,      ὰ π.                                                                                                      (117)     

 

The graph of the function ὰ  ȹr/r, with r0 = 1, is shown in Figure 4. At r = r0, this function tends to infinity ȹr/r = ¤, and 

at r < r0 it becomes imaginary, which once again confirms the model of an ñempty bubble (i.e., a spherical cavity) in a liquid.ò 

 

Thus, averaging metrics (72) and (73) leads to a metric-dynamic model of a stable (conditionally convex) vacuum formation 

of the ñspherical cavity in a liquidò type, whereas individually these metrics do not lead to such results. This once again 

confirms that averaging metrics (72) ï (73) or (75) ï (76)) is not meaningless. 

 

2.8.3 Twisting into subcont k-braids 

 

In Ä5.2 in [3] it was shown that if two metrics (i.e. quadratic forms) are added (or averaged), in particular 

 

Ὠί Ὠί  Ὠί ȟ                                                                                                                                       (118)             

 

then this corresponds to a segment of a double helix, consisting of two flight lines (ñstrandsò) ί  and   ί . The segments 

of these spirals are always mutually perpendicular to each other Ὠί  ̂Ὠί  (see Figure 10 in [3]) and can be described by 

a complex number 

 

Ὠί
Ѝς
Ὠί ὭὨί                                                                                                                                             (119)             

                                                                                                                                                                                                                                                                                                                                           

the squared modulus of which is equal to the averaged metric (118). 

 

Each of these ñthreadsò can consist of two sub-threads Ὠί ȭÁÎÄ  Ὠί
Ȱ
, as well as ί ȭ

and  Ὠί
Ȱ
 (see Figure 10 in [3]). 

Then the spiral is described by a system of two conjugate complex numbers 

 

 

Ὠί ȭ

Ѝς
Ὠί ȭ ὭὨί ȭȟ                                                                                                                                         (120)       

  

Ὠί ȭȭ

Ѝς
Ὠί ȭȭὭὨί ȭȭ

,        

 

the product of which is also equal to the averaged metric (118).       

In accordance with expressions (55) ï (59) in [2], the linear elements Ὠί  ʠ  Ὠί  in metrics (72) and (73) can be repre-

sented in the form of spintensors or in the form affine aggregates (i.e. affinors, essentially spirals) 
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In Ä5.2 in [3], it was proposed to call the averaged metric of the form (118) a 2-braid. 

 

Thus, according to the classification of the Algebra of Signature, the averaged metric (109) is a 2-braid. in which two lines 

(ñthreadsò)  ί  ÁÎÄ  Ὠί  are intertwined, defined by affinors  (121)  and  (122), or four twisted sub-lines Ὠί
ȭ
ȟὨί

ȭ
ȟ  

Ὠί
ȭȭ
ȟὨί

ȭȭ
 (120). 

 

According to Ä2.6 of this article, each of the metrics (72) and (73) can be represented as a sum of seven sub-metrics with the 

signatures of the left ranker from the ranking expression (101) with probability 1/7, which, in turn, can be are presented as a 

sum of sub-sub-metrics with a corresponding probability of 1/49, and such a ñdeepeningò with decreasing probability can 

continue indefinitely. 

 

Assuming that each sub-metric and sub-sub-metric, etc. defines spiral lines, with a "color" corresponding to their signature 

(see ranking expression (70) in [3]) 

                                                                                                                                                                                          (123)       

 

 

 

 

 

 

 

 

 

 

 

then the results obtained in this paragraph can be illustrated by a two-dimensional ñsliceò of a 3-dimensional stable vacuum 

formation of the ñspherical cavity in a liquidò type, shown in Figures 4 and 5. 

 

The intertwined fabric of the space-time continuum of the Algebra of Signature is in many ways similar to the spin network 

of loop quantum gravity. 
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Fig. 5: Fractal illustration of a 2-dimensional slice of a 3-dimensional stable vacuum formation of 

the "spherical cavity in a liquid" type, consisting of an interweaving of many lines ("threads") of different "colors", 

which are more and more elongated as they approach a sphere with a radius r0 

  

 

2.8.4 Movement of subcont layers (i.e. ñwhiteò elastoplastic pseudo-medium) 

 

From the previous paragraph it follows that two metrics (72) and (73) with signature (+ ï ï ï) determine the metric-dynamic 

state of two 4-dimensional spaces, which are intertwined throughout into a single ñfabricò of subcontact. 

 

According to the formal classification of ñcolorsò of the Algebra of Signature (123) (or (70) in [3]), both of these 4-spaces 

have a white ñcolorò, because have a signature (+ ï ï ï). Therefore, for clarity, let us assume that metric (72) describes an 

elastoplastic pseudo-medium of ña-whiteò color (or a-subcont), and metric (73) describes a pseudo-medium of ñb-whiteò 

color (or b-subcont). 

 

Now let's look at how these elastoplastic ñpseudo-mediumsò move. 

 

In Ä6.2 in [3], several kinematic cases of motion of layers of double-sided 23-lm,n-vacuum were considered. 

 

For metrics (72) and (73), the first case is suitable, i.e. metric (91) in [3] with signature (+ ï ï ï) 

 

Ὠί  ρ ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ ,                                                                                           (124)                                 

 

since in this metric, as well as in metrics (72) and (73), the components of the metric tensor Ὣ  = Ὣ  = 0. 

 

In turn, metrics (75) and (76) with signature (ï + + +) (according to classification (123): elastoplastic pseudo-media of                  

ña-blackò and ñb-blackò color, i.e. a-antisubcont and b-antisubcont), corresponds to metric (91) in [3] with a similar signature 

(ï + + +) 

 

Ὠί  ɀρ ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ .                                                                                       (125)       



 

Let's compare Ὣ   in metrics (72) and (124), as a result we get 

 

ρ ρ    

 

from where we determine the components of the velocity vector of the ña-whiteò pseudo-medium (i.e. a-subcont) 

 

 ὺ     or   ὺ Ὥ    or  Ὥὺ  ,    ὺ π ,    ὺ π.                                            (126) 

 

Let's compare Ὣ  in metrics (73) and (124), as a result we get 

 

ρ ρ  ,  

 

from where we determine the components of the velocity vector of the ñb-whiteò pseudo-medium (i.e. b-subcont) 

 

ὺ     or   ὺ  ,    ὺ π ,    ὺ π.                                                                                           (127) 

 

We also compare Ὣ  in the averaged metric (109) and in the metric (124), as a result we obtain for the subcont speed on 

average 

 

ρ ρ    or   ὺ πȟ  ὺ πȟ    ὺ πȢ                                                                                                      (128)      

 

 

According to Exs. (126), (127) and (128), in all radial directions the average speed of the ab-subcont (i.e., the ñwhiteò 

pseudo-medium) is zero 

 

ὺ ὺ ὺ π   or  ὺ
ὧςὶπ
ὶ

Ὥ
ὧςὶπ
ὶ
 = 0.                                                                               (129)  

 

From Exs. (126), (127) and (129) it is clear that the ña-whiteò pseudo-medium (a-subcont) flows in the form of thin streams 

(currents) from all sides to the edge of the spherical cavity along many spirals, i.e. wrapping around all radial directions (see 

Figure 6a), and at r0 = r , reaches the speed of light c. In this case, the ñb-whiteò pseudo-medium (b-subcont) flows out in the 

form of thin streams (currents) from the edge of the spherical cavity in all directions along many spirals (winding around 

radial directions), starting from the speed of light at r0 = r , and decreasing on the periphery to zero. Taken together, the             

ña-whiteò and ñb-whiteò currents are twisted into opposing double helices (Figure 6a), which, on average, in each local region 

completely compensate for each otherôs manifestations. That is, in each local region (outside a spherical cavity with radius r0) 

a balance is maintained between inflowing and outflowing currents and countercurrents along ñwhite threadsò twisted into 

double spirals, the relative elongation of which was discussed in Ä2.8.3. 

 

When extracting information from a set of metrics (72) and (73), we see that the greater the local stretching of the white 

ñthreadsò of the subcont, as we approach the spherical cavity (see Ex. (117) and Figure 4), the greater the speed of the currents 

flowing along these ñthreadsò (see Exs. (126) and (127) and Figure 6a)). 

 

 

 



                                   
                                                            ʘ)                                                                          ʙ) 

 

Fig. 6: a) a-white pseudo-medium (a-subcont) flows in the form of thin streams (currents) in spirals to the edge of a spherical cavity with 

radius r0, gradually increasing the speed from zero to the speed of light c, while b-white pseudo-medium (b-subcont) flows out in the form 

of thin streams (currents) in counter-spirals around all radial directions from the edge of a spherical cavity with radius r0, starting from the 

speed of light;  b) ñWhiteò and ñblackò pseudo-medium flow out and flow in spirals around all radial directions to the edge of a spherical 

cavity with radius r0 

 

The speed and acceleration of the a-subcont and b-subcont can be studied not on the basis of the simplified kinematic model 

(91) in [3], but on a more sophisticated dynamic model presented in Ä4 in [4]. However, it is necessary to devote a separate 

extensive study to this. Therefore, we will limit ourselves here to only a kinematic consideration. 

 

As was shown in Ä2.6, each current flowing along the ña-whiteò thread and along the ñb-whiteò thread is an interweaving 

(bundle) of seven sub-currents flowing along sub-threads with ñcolorsò (i.e. with signatures) from the left ranking of expres-

sion (123) (or (70) in [3]). In turn, each sub-current is a bundle of 7 sub-sub-currents, and this continues ad infinitum (see 

Ä2.6). 

 

The flows of many intertwined ñcoloredò sub-currents along stretched and twisted ñthreadsò are illustrated in Figure 6. 

 

As already noted, ñcoloredò pseudo-environments and ñcoloredò thread-like currents are mental constructions (i.e., a fig-

ment of the imagination). Here we have used these concepts only to help thinking understand the essence of mathematical 

models in terms close to our sensory experience. This is a clear difference in the interpretation of the Algebra of Signatures 

of zero components of the metric tensor compared to the general relativity of A. Einstein. The zero components of the metric 

tensor Ὣ  and  Ὣ Ὣ  are here associated not with the change in the flow of time, as in general relativity, but with the 

movement of pseudo-mediums (see Ä6 at [3]). The illusion of a moving-deformed continuous medium is more acceptable to 

our perception than the illusion of a change in the flow of time. The fact is that time is a very complex and multi-valued 

philosophical category, and we do not know how to measure it. Humanity generally does not have a single instrument capable 

of measuring time, which is given to us as a sense of duration. Only celestial bodies (planets and stars) allow us to navigate 

in real time. However, mechanical or electronic watches do not measure time! A watch is a complex technical device that 

ensures fairly stable rotation of the hands. They allow us to synchronize various processes, but the clocks do not measure 

practically any time (i.e., the duration we perceive). All such devices are stable synchronizers (i.e., a frequency generator, or 

a frequency standards) with a certain error. Likewise, we do not measure the real extent of Being with rulers, but only the 

distance between objects or the sizes of the objects themselves. Ernst Mach loudly declared this in ñMechanics. A historical 

and critical essay on its developmentò in 1883, but not many heard him. Technical synchronizers (which we call clocks or 

stable frequency standards) can indeed produce clock frequencies differently, depending on whether they are moving relative 

to the physical vacuum at high speed or not, because these are different versions of their existence, and this may be consistent 

with the conclusions of relativistic mechanics. However, we note once again that these clocks have practically nothing to do 

with the complex and unevenly flowing real time (i.e., the duration of Existence). Therefore, it is difficult to perceive the 

distortion of technical time and the curvature of technical space in the foundations of the fundamental theory. In other words, 



Minkowski's space-time continuum is a real illusion constructed by the public consciousness. Whereas intuition treats the 

extension of real Being, as a continuous medium capable of deformation and at the same time moving at an accelerated rate, 

with great confidence. At the same time, the mathematical model under consideration shows that local deformation of the 

pseudo-medium is inevitably accompanied by the emergence of a local flow, and vice versa, flows of the pseudo-medium 

cause its deformations. On the other hand, the interpretation of the results obtained as a 4-curvature of the space-time con-

tinuum, or as a 4-distortion of an elastoplastic pseudo-medium, is equivalent in terms of the degree of our confidence in the 

perception of the surrounding reality. Therefore, the elastoplastic or spatiotemporal interpretation of the calculation results 

are equivalent, and depend on the convenience of their use in solving a particular problem. 

 

At the same time, the elastoplastic interpretation has one undeniable advantage, since in this case, within all areas of metric-

dynamic models of vacuum formations and for all vacuum formations included in the general consideration, one global time 

can be introduced. At the same time, against the background of the global space-time continuum, the parameters of the                        

4-strain of a continuous elastoplastic pseudo-medium are set everywhere.  
 

2.7.5 Averaged metric-dynamic state of anti-subcount 

 

If with metrics (75) ï (77) with signature (ï + + +): 

 

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ ,          (75ǋ)       

Ὠί ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ          (76ǋ)     

Ὠί ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰                                      (77)                 

          

perform similar actions (75) ï (91), then we obtain a metric-dynamic model of 

exactly the same, but opposite, stable, conditionally ñconcaveò vacuum for-

mation of the ñspherical anti-cavity in a liquidò type, with an averaged metric 

 

Ὠί Ὠί  Ὠί ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰  (130) 

 

and ñblackò a-antisubcont and b-antisubcont currents intertwined into bundles. 

 

 

2.8.6 Three possible scenarios for the coexistence of a ñspherical cavityò and a 

ñspherical anti-cavityò 

 

The condition for maintaining ñvacuum balanceò (i.e. the principle of Absolute 

absence) dictates three main possible scenarios for the coexistence of a ñspherical 

cavity in a liquidò and a ñspherical anti-cavity in the same liquidò: 

 

1]. If the cavity (72) ï (74) and the anti-cavity (75) ï (77) occupy practically the 

same volume of 23-lm,n-vacuum (i.e., they are practically combined in coordi-

nates and time) then they completely compensate for each other's manifestations. 

The most likely scenario for their coexistence is a ñdance of deathò (see Figures 

7 and 8), as a result of which they lose energy in the form of wave disturbances 

and disappear (annihilate). 

 

2]. If the ñcavityò (72) ï (74) and the ñanti-cavityò (75) ï (77) exist simultane-

ously, but are separated in 3-dimensional space, then, when averaged over the 

entire space, they also completely compensate for each otherôs manifestations. 

Such ñconvexityò and ñconcavityò must strive towards each other in order to 

merge again in the ñdance of deathò. 

    

 
 

 
 

Fig. 7: Illustration of the "cavity" and 

"anti-cavity" dance of death 

 

 
 

Fig. 8: ñCavityò and ñanti-cavityò                  

spaced apart 

     



3]. ñCavityò (72) ï (74)  and ñanti-cavityò (75) ï (77)  can be spaced in time, maintaining a ñvacuum balanceò. In this case, 

they should flow into each other with some periodicity, for example, using the ñmechanismsò of explosion and Eddington-

Finkelstein collapse (94). 

 

Note that if we strictly adhere to the principle of ñFair distributionò, then all three of the above scenarios should be realized 

with a probability of 1/3. 

 

At this stage of the study, it is not clear what is inside a spherical ñcavityò with radius r0 and in a similar spherical ñanti-

cavityò? Another problem is this: it turns out that in the world described by Einsteinôs first vacuum equation (42) there are 

only two mutually opposite cavities. There is nothing else, but where is the huge variety of entities inhabiting the real world? 

In addition, the presence of a singularity of the type ὰ  ȹr/r  Ÿ ¤  raises doubts.  

 

Next, an attempt will be made to answer these questions.  
 

 

2.9 Filling a spherical cavity 

 

We consider the ñinvertedò metrics (84) ï (86) with signature (+ ï ï ï): 

 

Ὠίz ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ        (84ǋ)  

Ὠίz ρ ὧὨὸ
 
Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ȟ        (85ǋ)     

Ὠίz  ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰Ȣ                                (86ǋ)                  

 

With these metrics it is necessary to carry out a full analysis, which was carried 

out in Ä2.8 with metrics (72) ï (74), but we will focus on the most basic aspects 

here. 

 

Let's consider the result of averaging the metrics (84) and (85) 

                                                                                               (131)           

Ὠίᶻ Ὠίz  Ὠίz ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰                                                                 

                                                                                                                      

To determine the relative lengthening of the subcont in this case, we substitute 

into Ex. (81) the components Ὣ  from the averaged metric (92a), and the com-

ponents Ὣ   from the original metric (60iǋ), as a result we obtain 

  

ὰ ρ,       ὰ π,      ὰ π.                                  (132)       

 

The graph of the function of radial relative elongation of the subcont (132)                

ὰ  ȹr/r, with r0  1, is shown in Figure 9. 

 

It is obvious that the averaged metric (92a) describes the deformation and flows 

of the subcont inside a spherical cavity. 

 

In Figure 11 shows a combination of graphs of the relative elongation functions of the subcont (117) and (132), both outside 

and inside the considered corpuscular spherical vacuum formation.  

 

Now it becomes clear why ñinvertedò metrics-solutions (84) ï (86) of Einsteinôs first vacuum equation are needed. These 

solutions may bring clarity to that region of space that was hidden behind the Event Horizon of the Schwarzschild metrics. 

     
 

An air bubble in a liquid 

 
Fig. 9: Graph of the function (132) 

ὰ    

 

 
Fig. 10: Combining the graphs of the rela-

tive elongation functions (117) and (132) 

of the subcont  

 

 
 



 

However, at r = r0, both functions of the relative elongation of the subcont (117) and (132) tend to infinity (ȹr/r = ¤). This 

suggests that despite obvious progress in filling the ñblack spots,ò problems associated with singularities remain. 

 

An attempt to solve the problem of singularities will be made in the next article of this project, using Einstein's third vacuum 

equation. 

                                      

A similar averaging of ñinvertedò metrics (87) ï (89) with signature (ï + + +) leads to a metric-dynamic model of the core, 

which fills a spherical cavity in a stationary deformed antisubcont (see Ä2.8.5). 

 

    

3 Averaged Einsteinôs second vacuum equation 

 

3.1 Averaged vacuum equation 

 

Let us consider the system of Einstein vacuum equations (51) 

 

 
ὙὭὯ ȿρὫὭὯ πȟ               

ὙὭὯ ȿςὫὭὯ πȢ               
                                                                                                                               (133)  

 

Each of the equations of this system has the right to be applied with a probability of İ; therefore, according to the principle 

of ñFair distributionò, we will look for a solution to the averaged equation 

 

Ὑ ϵ ȿὫ ȿὫ πȟ                                                                                                                                      (134) 

 

or 

 

Ὑ ϵ Ὣ ȿ ȿ πȟ                                                                                                                                            (135)                                                                                             

 

where according to Ex. (50) 

 

ȿ ,    ȿ  ȟ    r1 ï radius of the first sphere;   r2 ï radius of the second sphere.                                                (136) 

 

From the point of view of conservation laws, the averaged vacuum equation (134) has the same properties as any of the 

equations (133), because the covariant and ordinary derivatives of the tensor on the left side of this equation are equal to zero. 

 

ᶯ Ὑ ϵ ȿὫ ϵȿὫ
ϵ ȿ ϵȿ

πȢ                                                                                          (137) 

 

When considering the vacuum equation (135), three possible cases are identified: 

 

1). If ȿ ȿ , then Eq. (135) takes the form of the first vacuum equation (42) Ὑ = 0. 

 

2). If ȿ ȿ ȿ , then Eq. (135) takes the form of the second vacuum equation 

 

Ὑ ϵ ȿ Ὣ π.                                                                                                                                                        (138)                                                                                                                                                                                                            

 

3). If ȿ ȿ Ὑ, then Eq. (135) takes the form of the Einstein tensor equal to zero 

 

Ὑ ϵ ὙὫ π.                                                                                                                                                            (139)          

 

This equation, according to expressions (40) ï (42) for 4-dimensional space (n = 4), in any case (+) or (ï) again takes the form 

of the first vacuum equation (42). 



3.2 Solution of Einstein's second vacuum equation 

 

3.2.1 Metrics-solutions of Kottler - de Sitter - Schwarzschild and Reissner - Nordstrom  

 

The most interesting seems to be the third, self-consistent case, when ȿ ȿ Ὑ, but at this stage of the study we only 

know that Eq. (139) reduces to Einsteinôs first vacuum equation (42), and its solution have already been discussed in Ä2 of 

this article. 

 

Therefore, let us consider solutions to the second vacuum equation (138) 

 

Ὑ ȿ Ὣ πȟ                                                                                                                                                           (140) 

 

where ȿ ϵ ȿ ,  here ȿ σὶϳ . 

 

For the stationary, spherically symmetric case, the solutions to Eq. (140) are five metrics with signature (+ ï ï ï) 

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  (141)        

Ὠί ρ ὧὨὸ
     

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                 (142)        

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  (143)        

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  (144)   

 

Ὠί ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                                                         (145)     
 

where ὶȟὶȟὶȟὶ   and  ὶȟὶȟὶȟὶ  are integration constants (i.e. constant metric parameters) with the dimension of 

distance. 

 

A system of these metrics determines the stable metric-dynamic state of the subcont (i.e., the outer side of the 23-lm,n-vacuum, 

see Ä4 and Figure 7 in [3]). 

 

Also, solutions to Eq. (140) are five metrics with signature (ï + + +) 

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                               (146)        

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                               (147)       

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                               (148)       

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                               (149)  

 

Ὠί  ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ .                                                                                                      (150)  

 
A system of these metrics determines the stable metric-dynamic state of the antisubcont (i.e., the inner side of the 23-lm,n-

vacuum). 

 



Friedrich Kottler first wrote down the Kottler metric of the form (143) 

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                    (143ǋ)      

in article [34], which was published in March 1918, almost immediately after the publication of Einsteinôs general relativ-

ity. In the case: ra = ¤  and  rb Í 0, the Kottler metric (143) becomes the Schwarzschild metric 

Ὠί ρ ὧὨὸ ὶ Ὠ— ίὭὲ—Ὠ‰ Ȣ                                                                            

In another limiting case: ra Í ¤ and rb = 0, the Kottler metric (143) becomes the de Sitter metric 

 

 Ὠί  ρ ὧὨὸ ὶ Ὠ— ίὭὲ—Ὠ‰ Ȣ                                                                                  

 

In the third case: ra = ¤  and  rb = 0, the Kottler metric (143) takes the form of the Minkowski metric  

 

Ὠί ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ Ȣ                                                                                                  

 

Therefore, the metrics-solution (141) ï (144) and (146) ï (149) of the second Einstein vacuum equation (140) will be called 

the Kottler - de Sitter- Schwarzschild metrics or, in short, KdSSh-metrics. 

 

It should be noted that solving the Einstein-Maxwell equation in vacuum 

 

Ὑ ὊὊ Ὣ Ὂ Ὂ ȟ   where  Ὂ  Ὂ  ,  Q is electric charge.                                          (151) 

 

is the Reissner-Nordstrºm metric 

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,   where   ὶ
 

                                   (152) 

 

In this metric, the third term  ὶ ὶϳ  is inverted with respect to the similar third term ὶ ὶϳ  in metrics (141) ï (144) and  (146) 

ï (149).  

 

Eq. (151) can be represented as vacuum equation (140) 

 

Ὑ  ȿ Ὣ π,    where  ȿ  σὶ  σὶϳ ȟϳ   here the symbol ὶ ὶ is introduced.                                                                                                                                 

 

This means that the second vacuum equation (140) may have five more solutions with signature (ï + + +) 

 

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                 (153) 

Ὠίz ρ ὧὨὸ
     

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                 

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠίz ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ;                                                                                                         

 



and five solutions with signature (ï + + +) 

 

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                              (154) 

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                

Ὠίz  ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ .                                                                                                       

 

 

3.2.2. A complete set of metrics-solutions to Einstein's second vacuum equation 

 

If we carry out an analysis with metrics (141) ï (145)  similar to obtaining ñinvertedò metrics (90) ï (91), then with ὶ  ὶ
 ὶ  ὶ  ὶ   ʠ  ὶ  ὶ  ὶ  ὶ  ὶ , we obtain the following four sets of Kottler - de Sitter - Schwarzschild - 

Reisner - Nordstrºm metrics-solutions of the second vacuum equations, in short, KdSShRN-metrics with signature (+ ï ï ï): 

 

I(+) ï set ȟ ȡ 

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                       (155) 

Ὠί ρ ὧὨὸ
     

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠί ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ;                

 

 

H(+) ï set  ȟ :  

                                                                                                          

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        (156) 

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠίz ρ ὧὨὸ
   

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠίz ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ; 

 

 

 



V(+) ï set  ȟ :  

                                                                                                          

Ὠίzᶻ ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        (157) 

Ὠίzᶻ ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠίzᶻ ρ ὧὨὸ
   

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠίzᶻ ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠίzᶻ ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ; 

 

 

Hǋ(+) ï set ȟ :  

 

Ὠίz ᶻz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                       (158) 

Ὠίz ᶻz ρ ὧὨὸ
     

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠίz ᶻz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠίz ᶻz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠίz ᶻz ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ . 

 

 

A similar analysis of metrics (104) ï (108) leads to the following sets of metrics with signature (ï + + +): 

 

 

I(ï) ï set ȟ :  

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                    (159) 

Ὠί ρ ὧὨὸ
     

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠί ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ; 

 

 

 

 

 



H(ï) ï set  ȟ :  

                                                                                                          

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                     (160) 

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠίz ρ ὧὨὸ
   

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠίz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                 

Ὠίz ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ; 

 

 

V(ï) ï set  ȟ :  

                                                                                                          

Ὠίzᶻ ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                     (161) 

Ὠίzᶻ ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠίzᶻ ρ ὧὨὸ
   

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠίzᶻ ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠίzᶻ ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ; 

 

 

Hǋ(ï) ï set ȟ :  

 

Ὠίz ᶻz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                    (162) 

Ὠίz ᶻz ρ ὧὨὸ
     

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                        

Ὠίz ᶻz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                  

Ὠίz ᶻz ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                  

Ὠίz ᶻz ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ . 

 

3.2.3 Forty-first metric-solution 

 

Averaging of all 40 metrics (155)  ï (162)   with ὶ  ὶ  ὶ  ὶ  ὶ   and  ὶ  ὶ  ὶ  ὶ  ὶ  

leads to the eleventh zero metric  

 

В ί πϽὧὨὸ πϽὨὶ πϽὨ— πϽίὭὲ—Ὠ‰ πȟ                                                                                (163) 

 

which is also the trivial (forty-first) solution to the second vacuum equation (140). 



3.2.4 Metric-dynamic models of de Sitterôs kernel and antikernel 

 

Let's consider a simplified case when 

 

 ὶ ὶ ὶ ὶ ὶ   and    ὶ ὶ ὶ ὶ  ὶ = 0. 

 

Then, when averaging metrics (141) and (144), as well as metrics (142) and (143), only three de Sitter metrics with signature 

(+ ï ï ï) remain: 

 

Ὠί ρ ὧὨὸ
  

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                                     (164)    

     

Ὠί ρ ὧὨὸ
  

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                                     (165)       

  

Ὠί ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                                                        (166)   

 

which describe the subkont in de Sitterôs kernel. 

 

Similarly, when averaging metrics (146) and (149), as well as metrics (147) and (148), only three de Sitter metrics remain 

with signature (+ ï ï ï)    

 

Ὠί ρ ὧὨὸ
  

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                                 (167)     

    

Ὠί ρ ὧὨὸ
   

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                                 (168)  

      

Ὠί ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                                                     (169)  

 

which describe the antisubkont in de Sitter kernel. 

 

The main capabilities of the Algebra of Signatures (Alsigna) were presented in Ä2 when constructing a metric-dynamic 

model of ñspherical cavity - anticavity in a liquidò based on a set of metrics (72) ï (77).. 

 

All these methods are also applicable to the set of metrics (141) ï (150). However, we will not repeat here a complete 

analysis of these metrics, since this can be easily done by analogy with Ä2, and on the basis of other possibilities of presented 

in the Algebra of Signatures [1,2,3,4]. Let us note only the main features of the solutions to the second vacuum equation. 

 

 

3.2.5 De Sitterôs kernel 

 

Averaging metrics (164) and (165) leads to the metric (in terms of Alsigna to the sub-

contact 2-braid) 

 

Ὠί ὧὨὸ
 

ὶ Ὠ— ίὭὲ—Ὠ‰ Ȣ                                        (170)     

 

The zero component of the metric tensor in the averaged metric (170) is equal to one 

(Ὣ ρ), which means that time t is global.  

 
Fig. 11: Graph of the function 



 

Letós substitute the component Ὣ   from the metric (170) into the integral (110) 

 

 ‚ Ὣ ὨὶȢ 

 

As a result, we get 

 

‚
ὶ

ὶ ὶ
ὨὶȢ 

 

This integral is not taken in elementary functions, but numerical integration at rʘ =  2 

allows us to obtain the distance function ɝ shown in Figure 11. 

 

We substitute the components Ὣ  from the averaged metric (170) and the components 

Ὣ   from the metric (166) into the expressions for the relative elongation (116) 

 

ὰ ρ ρȢ                                                                              (116ǋ)       

 

As a result, we get 

                                                   

ὰ πȟ
     
ὰ ρ,      ὰ π,     ὰ π.                       (171)    

    

The graph of the function ὰ , which determines the relative elongation of the subcont 

in the radial direction at rʘ =  2, is shown in Figure 12. From this graph it is clear that the 

relative elongation of the subcont in the center of such a stable formation is close to             

(ï 1) (i.e., the subcont is compressed almost to zero). 

 

Starting from ὶ ὶ Ѝςϳ , as it approaches the periphery of the kernel with radius rʘ , 

the subcont is greatly stretched, and at r =  rʘ its stretch tends to infinity. 

 

Letôs compare the zero components Ὣ  in metrics (164) and (165) with the zero com-

ponent in metric (124), as a result we obtain: 

 

- for metric (164) 

 

1 + r2/r0
2 = 1+ vra

(+)2/c2 Ÿ  vra
(+)2 =  c2r2/r0

2   Ÿ vra
(ï) =   cr/r0;                                                                                      (172)  

                                                

- for metric (165) 

                                

1 ï r2/r0
2 = 1+ vrb

(+)2/c2 Ÿ  vrb
(+)2 = ïc2r2/r0

2 Ÿ vrb
(ï) = ï cr/r0.                                                                                     (173)                                       

                                                   

From Exs. (172) ï (173) it is clear that (by analogy with Exs. (126) ï (129) inside the ñsubcont kernelò the a-subcont and         

b-subcont currents move towards each other in all radial directions along two threads of the double helices (see Figure 13). 

Equal in magnitude, but opposite in direction, the radial velocities of the a-subcont and b-subcont currents vra
(+) = ï vrb

(+) in 

the center of the ñsubcont kernelò (i.e. at r = 0, see Figure 13) are equal to zero, and at the periphery of this ñkernelò with 

radius r0 they move at the speed of light. 

 

 
 

Fig. 12: Graph of the function ὰ   

(120), i.e. relative elongation of the 

subcont in the radial direction. 

 

 
 

Fig. 13: Radial counter currents of           

a-subkont and b-subkont, twisted into 

double helices 



Just as it was shown in Ä2.8.3 a-subcont and b-subcont currents consist of sub-currents rolled into bundles, which in turn 

consist of sub-sub-currents coiled into bundles, and so on until infinity. 

 

The situation seems more physical when, for an external observer, the ñsubcont kernelò 

rotates. In this case, the a-subkont rotates at the periphery of the kernel at the speed of 

light vra
(+)(r0) = ʩ (Figure 14). Then it flows along large spirals with deceleration to the 

center of the kernel, where vra
(+) (0) = 0 practically stops and turns into a b-subcount. 

In turn, the b-subcont flows along large spirals from the center of the nucleus with 

acceleration, starting from the speed vrb
(ï)(0) = 0 and ending with rotation at the pe-

riphery of the nucleus at the speed of light vrb
(ï)(r0) = ʩ (Figures 13 and 14), where it 

turns into a-subcont. Thus, intrakernel ab-subcont ñprocessesò become looped and 

maintain the highly deformed periphery of the de Sitterôs kernel in a stationary state. 

In this case, the reason for the strong deformation of the subcont at the periphery of 

the core turns out to be associated with centrifugal inertia. 

 

It's like Kurt Gºdel's spinning universe, in which centrifugal force balances gravity. 

Only in the case under consideration, the centrifugal inertia associated with the rotation 

of the subcontent de Sitter kernel opposes the elasticity associated with its defor-

mation. In addition, inside the de Sitterôs kernel there is not one general ab-subcont 

rotation around one axis, but simultaneously infinitely many rotations of ab-subcont 

subcurrents (folded into bundles) around many differently directed axes. Therefore, 

for an external observer, such simultaneous infinite-axial rotation is practically absent. 

 

Thus, the ab-subcont currents tied into radial bundles and folded into large spiral arms 

(see Figure 14) maintain the vacuum balance and stability of the highly deformed inte-

rior of de Sitterôs kernel. 

 

The subcont de Sitterôs kernel, with colossal compression and expansion, turned out to 

be an extremely difficult place to live. Only in the area of a sphere with radius                         

ὶ ὶ Ѝςϳ  are conditions close to normal and it is possible to survive. Therefore, this 

kernel is not called the ñworldò. 

 

3.2.6 Antisubʩont de Sitterôs kernel 

 

Averaging metrics (167) and (168) leads to the metric (in terms of Alsigna to the antisubcont 2-braid) 

 

Ὠί ὧὨὸ
 

ὶ Ὠ— ίὭὲ—Ὠ‰ Ȣ                                                                                                   (174)     

 

By performing actions similar to (169) ï (173) with the components of the antisubcont 2-braid (174), we obtain a negative 

(i.e. completely opposite) stable antisubcont centrally symmetric formation, which we will call the ñantisubcont de Sister 

kernelò. 

3.2.7 Annihilation of subcont and antisubcont de Sitterôs kernels 

 

The subcont and antisubcont de Sitterôs kernels completely compensate for each other's manifestations. This is immediately 

visible, because averaging six metrics (164) ï (169) leads to a zero metric of the form (163). 

 

At the same time, the annihilation of subcont and antisubcont de Sitterôs kernels can be accompanied by periodic processes. 

 

The coordinate transformation proposed by Lemaitre and Robertson [9], 

 

 
ʘ) 

 

 
ʙ) 

Fig. 14: a) Model of a rotating ker-

nel; b) Fractal illustration of a rotat-

ing kernel. 



ὶǋ

 

ὶὩ
 
ȟ       ὧὸǋ ὧὸὶὰὲρ                                                                                                              (175) 

 

leads, for example, a pair of mutually opposite metrics (164) and (167) to the form 

 

dsa
(ï)2 = ʩ2dt¡ 2 ï Ὡ

 
¡ 

 [dr¡ 2 + r¡ 2(dq 2 + sin2q dj 2)],                                                                                                    (176) 

 

dsa
 (+)2 = ï ʩ2dt¡ 2 + Ὡ

 
¡ 

 [dr¡ 2 + r¡ 2(dq 2 + sin2q dj 2)].                                                                                                  (177) 

 

When averaging these metrics, we obtain a 2-braid 

 

dsaa
(Ñ)2 = 0 + 

 
¡ 

  
 
¡ 

 

 [dr¡ 2 + r¡ 2(dq 2 + sin2q dj 2)]  with signature (0 + + +).                                                      (178) 

 

This type of averaged metric is associated with the periodic nature of intra-vacuum processes, since the hyperbolic sine 

 

 
¡ 

  
 
¡ 

 

ί Ὥ ίὭὲὭ                                                                                                                          (179) 

 

is a periodic function. 

 

The second pair of mutually opposite metrics (165) and (168), as a result of coordinate transformations 

 

ὶǋ

 

ὶὩ
 
ȟ       ὧὸǋ ὧὸὶὰὲρ  ,                                                                                                          (180)     

 

also on average they form a 2-braid 

 

dsbb
(Ñ)2 = 0 ï 

 
¡ 

  
 
¡ 

 

 [dr¡ 2 + r¡ 2(dq 2 + sin2q dj 2)]  with signature (0 ï ï ï),                                                       (181) 

 

of a periodic nature. 

 

In this case, we got two exotic metrics (178) and (181), which do not have a time coordinate. This result requires additional 

understanding. 

 

 

3.2.8 Compliance with ontological principles 

 

Similar to how it was shown in Ä2.5, each mutually opposite pair of metrics (164) ï (169) can be represented as a sum of              

7 + 7 = 14 sub-metrics with the corresponding signatures (as, for example, in rankings (100) ʠʣʠ (101). Mutually opposite 

pairs of sub-metrics, in turn, can be represented as a sum of 7 + 7 = 14 sub-sub-metrics, and so on ad infinitum. 

 

Thus, a set of generalized de Sitter metrics (164) ï (169) describe the metric-dynamic state of a stationary closed core - an 

anti-core, satisfying all three ontological principles: ñAbsolute absenceò, ñFair distributionò and ñAbsence of finiteò. 

 

 

 



3.2.9 Schwarzschild - de Sitterôs world - antiworld  

 

Let us return to considering the set of metrics (141) ï (150), which are solutions to the second vacuum equation (140), provided 

 

 ὶ ὶ ὶ ὶ  ὶ    and    ὶ ὶ ὶ ὶ  ὶ Ȣ 
 

In this case, we have five metrics with signature (+ ï ï ï) (for subcont, i.e. for the outer side of the 23-lm,n-vacuum) 

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                       (182) 

Ὠί ρ ὧὨὸ
     

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                      (183) 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                       (184) 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                      (185) 

Ὠί ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ;                                                                                                         (186)                                                                                              

 

and five metrics with signature (ï + + +) (for antisubcont, i.e. for the inner side of the 23-lm,n-vacuum) 

 

 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                     (187) 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                     (188) 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                     (189) 

Ὠί ρ ὧὨὸ
    

ὶ Ὠ— ίὭὲ—Ὠ‰ ȟ                                                                     (190) 

Ὠί  ὧὨὸ Ὠὶ ὶ Ὠ— ίὭὲ—Ὠ‰ .                                                                                                      (191) 

 

3.2.10 Subcont Schwarzschildïde Sitter world 

 

Letôs average metrics (182) ï (185) with signature (+ ï ï ï) 

 

ds1-4 
(+)2 =  (ds1

(+)2+ ds2
(+)2 +ds3

(+)2+ ds4
(+)2).                                                                                                                    (192) 

As a result, we get a 4-braid  

   

Ὠί ὧὨὸ Ὣ ὶὨὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ,                                                                                              (193) 

 

where 

Ὣ ὶ
             

 

Ȣ                                                                                 (194) 



 

Such a 4-braid ds1-4
(ï)2 is formed by eight twisted ñsub-threadsò (i.e. linear forms), forming a system of two complex conjugate 

quaternions: 

 

Ὠί ȭ ρ

Ѝτ
Ὠί ȭ ὭὨί ȭ ὮὨί ȭ ὯὨί ȭȟ                     (195)  

      

Ὠί ȭȭ ρ

Ѝτ
Ὠί ȭȭὭὨί ȭȭὮὨί ȭȭὯὨί ȭȭȟ              

 

the product of which is equal to the averaged metric (193). 

 

The zero component of the metric tensor in the averaged metric (193) is 

equal to one Ὣ ρ), which means that time t is global. 

 

Letôs substitute the components Ὣ  of the metric (193) into the expres-

sions for the relative elongation (116) 

 

ὰ ρ ρȟ                                                           (116ǋ)       

 

where the components Ὣ  are taken from the non-curved metric (186). 

 

As a result, we get 
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ὶ
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ς

ρ

ρ 
ὶὦ
ὶ
  
ὶς

 ὶὥ
ς

  ρȟ   (196)     

   

 

ὰ πȟ
     

  ὰ π,      ὰ π.           

 

The graph of the function ὰ  (196) with ὶ ςπ  and  ὶ πȢχ,  which determines the relative elongation of the subcont in 

the radial direction, is shown in Figure 13. From this graph it is clear that the subcont Schwarzschild - de Sitter world sche-

matically represented on it is an almost hollow ball with compacted edges, inside of which there is the same small ball, 

highlighted by a spherical slit (which we will call ñrakiaò) 

 

We compare the zero components Ὣ  in metrics  (182) ï (185) with the zero component in metric (124) 

                                                            

Ὠί  ρ ὧὨὸ Ὠὶ ὶὨ— ὶίὭὲ—Ὠ‰ .                                                                                        (124ǋ)                                 

 

As a result, we obtain the velocities of four subcontós currents intertwined into bundles in each local region of the subcontôs 

world (see Figure 15): 

 

 

 

 

 
 

Fig. 15: Graph of the function ὰ  (196), which 

determines the relative elongation of the subcont 

in the radial direction 



ρ
ʩ

ρ     Ÿ    ὺ ʩ        Ÿ    ὺ
ʩ ʩ

ὧ ,                                (197)       

 

ρ
ʩ

ρ     Ÿ    ὺ ʩ    Ÿ    ὺ
ʩ ʩ

ὧ  ȟ                            (198)       

 

ρ
ʩ

ρ     Ÿ    ὺ ʩ    Ÿ    ὺ
ʩ ʩ

Ὥὧ  ,                           (199)       

 

ρ
ʩ

ρ     Ÿ    ὺ ʩ       Ÿ    ὺ
ʩ ʩ

ὧ  Ȣ                                 (200)       

 

Since ὺ  cannot exceed the speed of light, it follows from Exs. (146) ï (149) that the conditions must be met 

 

π ρȟ     π ρȟ    π ρȢ                                                                                                 (201)       

 

From these expressions it is clear that in this case, two subcontôs currents flow out in spirals from the periphery of the world 

at the speed of light, as described in ÄÄ3.2.4 ï 3.2.5. Then they slow down. However, near the inner nucleolus they again 

accelerate to the speed of light and turn into two opposite subcontôs currents, which, along the same ñthreadsò twisted in a 

spiral, return to the periphery of the world, first slowing down and then accelerating to the speed of light. 

 

Average subcontôs speed in each local region of the Schwarzschild - de Sitter world 

 

ὺ ρ
ὶὦ
ὶ

ὶς

ὶὥ
ς  ρ

ὶὦ
ὶ

ὶς

ὶὥ
ς   ρ

ὶὦ
ὶ

ὶς

ὶὥ
ς  ρ

ὶὦ
ὶ

ὶς

ὶὥ
ς  πȢ                                        (202)                             

 

This means that the inflowing and outflowing currents, twisted in a 4-helix, completely compensate for each 

otherôs manifestations, ensuring subcontôs balance and stability of the subcontôs deformations shown in Figure 15. 

 
3.2.11 Antisubcont Schwarzschild - de Sitterôs antiworld 

 

Averaging metrics  (187) ï (190)  with signature (ï + + +) 

 

ds1-4 
(ï)2 =  (ds1

(ï)2+ ds2
(ï)2 +ds3

(ï)2+ ds4
(ï)2),                                                                                                                    (203)                                                                                           

 

leads to results that coincide with the averaging of metrics (182) ï (185), but with the opposite sign. 

 

If we call the subcont Schwarzschild - de Sitterôs world a ñconvexityò, then the negative antisubcont Schwarzschild - de 

Sitterôs antiworld is exactly the same ñconcavityò. 

 

 

3.3 Other worlds 

 

According to Ä3.2.2, in addition to the Schwarzschild - de Sitterôs world and antiworld, considered in the previous paragraphs, 

studies of three more stable worlds are possible. 

 

Here we will not explore these worlds in detail, because their description is similar to the metric-dynamic models of stable 

vacuum formations discussed above. 

 

We present only the average metrics of these worlds and expressions for the relative elongation. 

 

 

 



1] When averaging the metrics (156), we obtain a 4-braid 

   

Ὠί ᶻ ὧὨὸ Ὣ ᶻὶὨὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ,                               (204)     

                 

where  Ὣ ᶻὶ
     ɀ   ɀ    

 

Ȣ         (205) 

 

In this case, the radial component of the relative elongation (116) has the form 

 

ὰz Ὣ ᶻὶ ρ
     ɀ   ɀ    

 

  ρȢ  (206)       

 

The graph of function (206) for ὶ ςȟ  ὶ ςπ  is shown in Figure 16. 

 

2] When averaging the metrics (157), we obtain a 4-braid 
   

Ὠί ᶻz ὧὨὸ Ὣ ᶻz ὶὨὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ,                               (207) 

 

where  Ὣ ᶻz ὶ
     ɀ   ɀ    

Ȣ          (208) 

 

In this case, the radial component of the relative elongation (116) has the form 

 

ὰzᶻ Ὣ ᶻz ὶ ρ
     ɀ   ɀ    

  ρȢ    (209)       

 

The graph of function (158) for ὶ ρπȟ  ὶ ρ  is shown in Figure 17. 

 
3] When averaging the metrics (158), we obtain a 4-braid 
 

Ὠί ᶻzᶻ ὧὨὸ Ὣ ᶻzᶻὶὨὶ ὶ Ὠ— ίὭὲ—Ὠ‰ ,                               (210) 

 

where  Ὣ ᶻzᶻὶ
    ɀ   ɀ    

Ȣ            (211) 

 

In this case, the radial component of the relative elongation (116) has the form 

ὰzᶻz Ὣ ᶻzᶻὶ ρ
    ɀ   ɀ    

  ρȢ                                                            (212)       

 

The graph of function (212) for ὶ πȢςȟ  ὶ ρ  is shown in Figure 18. 

 

The description of the corresponding antiworlds for these worlds is carried out similarly using the corresponding sets of 

metrics (156) ï (162). 

 

 
Fig. 16: Graph of the relative                  

elongation function (206) 

 

 
Fig. 17: Graph of the relative                  

elongation function (209) 

 

 
Fig. 18: Graph of the relative                  

elongation function (212) 

 



 

3.4 Deepening model concepts to infinity 

 

Everything that was said regarding infinite metric-dynamic models in Ä2 and  

Ä3 also applies to the Schwarzschild - de Sitterôs world and antiworld, with the 

only difference that in the center of these worlds there is a nucleolus. 

 

In the case under consideration, a two-sided metric space (i.e. 23-lm,n-vacuum) 

is the result of the superposition of eight metric spaces (182) ï (185) and (187) 

ï (190) or the interweaving of 8 + 8 = 16 linear forms twisted into 16-braid. 

 

In Figure 14a,b shows an illustration of the interweaving of several affine sub-

spaces forming a two-sided metric space. 

 

The properties of intertwined affine sub-spaces and multilayer metric spaces 

with signatures (+ ï ï ï) and (ï + + +), corresponding to the ñvacuum balanceò 

condition (+ ï ï ï) + (ï + + +) = 0, are described in detail in ñ Algebra of 

Signatures" [1, 2, 3, 4]. 

 

 
 

Fig. 20: Fractal illustration of the intertwined ñfabricò of a double-sided 23-lm,n-vacuum 

 
Depth-infinite metric-dynamic models of stable lm,n-vacuum formations of the ñspherical cavity in a liquidò type (Ä2.8), de 

Sitterôs kernels (Ä3.2.4), and Schwarzschild-de Sitterôs worlds (Ä3.2.9), separate extensive studies can be devoted, taking into 

account various coordinate transformations, for example (94), (95), (175) etc. But all these models, infinite in depth, based 

on solutions of Einsteinôs first and second vacuum equations, describe single stable vacuum objects. 

 

Therefore, the general question remains open: ñHow to introduce a model idea of the huge variety of spherical formations 

that fill the reality around us? 

 

 

 
 

Fig. 19: Illustration of the interweaving of 

ñthreadsò (i.e. lines) of several affine sub-

spaces forming the ñfabricò of a two-sided 

23-lm,n-vacuum 

 


