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ABSTRACT

This article is the fifth part of a scientific project under the general title "Geometrized vacuum physics based onithe Algeb
of Signatures”. In this article, Einstein's vacuum equations are used as conservation laws, and their solutionslgs metric
namc models of stable vacuum formations. Sets of mesadstions of vacuum equations are considered, and methods of
extracting information from these metrics based\yebra ofSignature are proposdeor convenience of perception of intra
vacuum processea change in the interpretation of the zero components of the metric tensor was used. Instead of curved
spacet i me continua, ficol or ed énediumaasetinrgdlicadsintoicansideratiort. In this casesthep s e
zero components of the miettensor determine not the change in the rate of flow of local time, but the speed of flow-of intra
vacuum current in the local region of the elastoplastic pseusitium.At the end of the article, an extended (third) Einstein
vacuum equation is proposauhich allows us to consider metiitynamic models of a variety of stable corpuscular vacuum
formations.Alsigna'’s infinitely deepening intertwined fabric of spdioee continuum, taking into account all 16 signatures

(i.e. 16 types of topologies), is inamy ways similar to the spin network of loop quantum gravity anedion@nsional Calabi

Yau manifolds. In this sense, the Algebra of Signatures can serve as a link that unites different directions in the developme
of quantum gravity.

RESUMEN
Este art2culo es | a quinta parte de un proyecto cient?2f
C1 g e b Signatudes . En este artzcul o, |l as ecuaciones de vac2zo d:¢
solucimes como modéhégmi m®srideof or maci ones de vac2o0 establ es
cas de ecuaciones de vac2o0 y se proponen m®todos para ex
Parafaciltarlapecepci -n de das?2prrocesad iilntzraun cambio en | a in’
tensor m®trico. En 4 egpor aleeconutrinao,s espiaciowoducen en
el astopl §stiEmsestcol mae@adolsds componentes cero del tenso
del flujo del tiempo local, sino la velocidad del flujo de la corrientemteac 2 0 en | a regi -n | ocal (
pl 8stico. Al fpirmaglonegelunar t(2 eulce,r age ecuaci -n de vac2o0 de

model os-dm®€&mi cos de wuna variedad de f o Elnefido entrelagaslo idfid- v ac 2
tamente cada vez m§s ipuoespacidiampo, tdnéendd éncuegtanlas 16lfiemias (esalecit, 16 tipos

de topolog?as), es en muchos aspectos similar a la-red d
Yau de 6 di mensi ones. Hmadstre ss egruteidceo ,s ealviCl gemroa ven cSuil o
el desarrollo de | a gravedad cu8ntica.
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BACKGROUND AND INTRODUCTION

"The best things in the world are not things"
Paraphrasing Art Buchwald

This work is the fifth in a series of articles under th
Signatures. o The purpose of this project is to stiaudy the
four articles of this series [1, 2, 3, 4] , a method was
mutually perpendicular monochromatic rays of light with wavelengthdrom all wave subrangeg’ =10"i 10" cm, where

n=m+ 1 (sieam[lphA 1

As a result, the deep probing method made it possi bl e t
/ mp-vacuum nested within each other (i.e., li§b-landscapes, see Figureard 4 in [1]) Based on this method, a math-
emati cal apparatus was developed under the gener al name

scribing the properties not only of fvaaareprobedndbwithligtf any
rays, but, for example, rays of sound waves.

In particular, in [1, 2, 3, 4] the following were stated:

- basics of the Algebra of Stignatures (for a set-dfrdensional affine, i.e. vector, spaces);
- basics of the Algebra @ignatures (for a set ofdimensional metric spaces);

- basics of spectradignature analysis;

- some aspects of kinematics and dynamick.pfvacuum layers.

Each of these areas of research requires further development, but this article takesstep irettte direction of developing

Al signads mat hemati cal apparatus, in particular, t he pos
considered. These ar e, such curved areas of fivacuumod t ha

In this article we will use the simplest version of differential geometry, with simplifications corresponding to Riemannian
geometry (see Figureabr Figure 4 in [4]) We will call this type of simplification the Riemannian approximation.
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Fig. 1: (repetition of Fig. 4 in [4])a) In Riemannian geometry, tiieansferringof the vectords® from pointp: of a curved space to the

nearby poinpz of the same space is carried out along a tangent to the geodesic line connecting these thisrtasé only the direction

of this vector changes, and its magnitude remains unchanged. In this case, when transferring ttis#?yabsmagnitude of the basis
vectorser©@ and the angles between them do not change. The curvature of such a space is determined by the change in the direction of the
vectords® during its parallel translation along an infinitesimal contdmyrin the most complexly distorted space, whemsfaring the

vectords® tangent to the geodesic line from pamto pz, its direction, magnitude, displacement may change and it may be rotated along

with twisting geodetic line. In this case, all four parameters of thasiksUj@, bP"®, e® d¥®c an change (see A 1 in
ferring the vectods® in such a complexly distorted space, the magnitude of the basis vegfbend the angles between them can change,

and the 4pbasis itself as a whole can rotate and shift



Let us recall that within the framework of Riemannian geometry, when transferring theds&tior a curved space along a
tangent to a geodesic line, only its direction changewu(€itg). In this case, the magnitude of the vector ds(a) remains
unchamed and there is no twisting or rotation.

Despite the fact that simplified differential geometry i
Hilbert made a major contribution to its development and final formulation. In 189 &tvitation of Felix Klein, 3year

ol d D. Hi l bert moved to the University of G°ttingen and
remained in this position for 35 years, virtually until the end of his life.

The most complex version of differential geometry corresponds to a distorted space, in which the geodesic line between two
nearby pointg; andp; of this space is not only curved, but also twisted, deformed (stretched or compressed) and displaced.

In this case, when transferring the vectds® tangentially to such a geodesic line, it can change: direction, length,
displacement, it can rotate along with the twisting of the geodesic line (see FiyuAgelwill call this most complex differ-

ential geometryi s pac e me t-abys wlfutme tpar al | el i-spav@metfylabbr evi at ed as MAF

MAP-spacemetry has yet to be developed despite the fact that much has already been done in this direction. For example, the
following have been developed: Rienme@artanSchouten geometry with torsion, Einstéfeyl geometry, Weizenbeek
Vitali-Shipov geometry of absolute parallelism, Newnfr@mrose isotropic tetrad method, Rosen bimetric geometry, complex
Riemannian geometry, Finsler geometry, teleparallel Horkgdgsavity models, Randabundrum gravity models, loop

guantum gravity model, Brafi3icke gravity model, GausBonet gravity model, conformal gravity, etc.

As will be shown below, the Riemannian approximation (i.e., geometry with simplifications shéigure h) allows us to
obtain metriedynamic models of stable vacuum formations of the corpuscular type. But to describe stable nodal vacuum
structures Riemannian geometry and Algebr@ignature are not enough.

Letds note once afths article is boadnstrtichneetrdgnamiqnaodeés of stable vacuum formations,
based on simplified Riemannian geometry and the Algebra of Signatures (Alsigna), presented in the first articles of the pro-
posed project [1, 2, 3, 4].

To build models of stble vacuum formations, it is necessary to first formulate conservation laws. To do this, we will use the

general theory of relativity of A. Einstein, which is based on Riemannian geometry. However, general rg&Riyisynot
entirely suitable for ackving this goal for a number of reasons listed below.

1] Analysis of contradictions in general relativity

The analysis below of the origin of the basic equation of the general theory of relativity does not pretend to be rijorous an
isnotther esul t of a scrupulous study of the numerous | iterat
is only an attempt to reconstruct the sequence of events in order to identify the root of the contradictions in this theory.
Initially, A. Einstein, over the course of 1QL2 years (from 1906 to 1917), built the general theory of relativity in such a way

that for a norrelativistic approximation (i.e. for a weak gravitational field and low velocities) it was reduced to Newton's

theory of graviation.

In Newtonian mechanics, the potential of the gravitational fisdteated by a material body with mass densit/described
by the Poisson equation

(X%o .[“ "Q” (1)
wher e G £12N5L Rg7i4itavitdtional constant.

Outside a massive body, Poisson's equation (1) turns into Laplace's eqé@tior, the solution of which for a spherical
body with constant madd has the form



% O )

wherei W ® o isthe distance from the center of the body to the observation point.

The criterion for the truth of new ideas about taure of gravity for A. Einstein was the possibility of returning to the
Poisson equation (1) while simplifying the initial conditions.

In addition to the condition of continuity of theories, A. Einstein was also guided by: the principle of coordinate iavarianc

(i.e., the independence of the laws of physics from the choice of coordinate system), the principle of general coeariance (i.

the statement that equations describing physical phenomena in different coordinate systems and systems reference system:
must have the same form. In particular, the equations must be invariant with respect to Lorentz transformations). A. Einstein
alsoreed on the heuristic principle of fequivalence of the
action was identified with the force of inertia arising in the accelerated frame of reference). In other words, Einséegdcomp

the effects of gravity with the curvature ofdimensional spaee i me . Another important Ei nst e
pendence of the speed of | ight from the reference frame,
spacetime catinuum with the metrials® =1 fifdt>+dx?+dy?+dz2. At the beginning of his creative career, A. Einstein was
inspired by the ideas of E. Mach that the characteristics of space and time (in particular, the properties of inential refere
systems) ar@redetermined by the distribution of massive bodies. Einstein also agreed with Mach's criticism of Newtonian
physics regarding absolute space, absolute motion and absolute mass, from which it followed that all equations of physics
should include only relate quantities, for example, relative distances, relative velocities and relative inertia. But subse-
quently, thelong ange action of Newtonds gravity (which E. Mach a
of light, and the conditions fahe formation of inertial forces with the principle of equivalence. Therefore, within the frame-

work of Einstein's special and general theories of relativity, Mach's ideas changed beyond recognition.

In the period 19138 1915 Albert Einstein, with the sistance of Marcel Grossmann, took advantage of the achievements of
Riemannian geometry, generalized to the case of cundithdnsional spaegéme based on the work of Hendrik Lorentz,

Henr i Poincar® and Hermann Minglbkek . w&s$ nalteoni,ntlogen ded
nonlinear theory of gravity.

As a result, in the middle of 1915, Einstein wrote down the generally covariant equation [5]

Y Y -Qu, 3

where"Q are the components of the metric tensor of a curvelidngénsional space with the metdg = "Q dxXdx;
"Q 9Q s |is the determinant of the matftR. 4)
{ T proportionality coefficient;

Y - = . . isRiccitensor; (5)
-Q —— —— —— areChristoffel symbols; (6)

"Y is energymomentum density tensor of a material object;
T istrace of the energgnomentum density tenséy "Q "Y .

It is very difficult to understand the incredibly intense thought process of A. Einstein, but, apparently, he equated the fully

geometrized Ricci tensdY with the material tensélY -"Q v because in curved space the covariant derivatives of all
these tensors are equal to zero
ny mh Yy -YQ mhny mh nQ rh )

David Hilbert showed the mathematical incorrectnedsgp(3).



D. Hilbert in 1915 was in close correspondence with A. Einstein and he, apparentq.¢8)wvith a trace term on the right
side B]. The presence of the trace teffiYQ in Eq.(3) could serve as a guide for Hilbert in his search for the correct solution.

In the 1915 paper7], D. Hilbert calculated the variation of the integral
1.y Tm 1Y o, ®

where’Y "Q°Y s scalar curvature; 9)
‘an Qo Qo Qioékment of 4dimensional volume.

As a result, Hilbert obtained a tensor with a trace t&fm -'Y'Q , the covariant derivative of which is equal to zefp [
nyY o -YQ ™8 (10
Later it turned out that within the framework of Riemannian geometry the second Bidedity is proved

ny nvy ny T8 1y

With simple transformations and multiplication by the contravariant téf@soerthe Bianchi identity (11) is reduced to
Ex. (10). This method of obtaining the Einstein tengor -YQ i s cal l ed firoyal 06 because of

cording to many researchers, neither Einstein nor Hilbert khevBianchi identities at the time of the creation of the basic
equation of general relativity. Both geniuses used the calculus of variations.

Some researchers believe that A. Einstein learned about the tensor with a tra¢e tertY’'Q from thework of D. Hilbert
[7]. Therefore, he multiplied both sides of Eq. (3)'Qy

QY QY -Qu,
as aresult, he gdY “Y¥ , from which the equation easily follows
Y o -YQ Y8 (12)

From the special theory of relativity A. Einstein knew that the enrergsnentum density tens¢or stressenergy tensor)
can have the formg]

YR "6 AQ — 00 -Q00 h (13)

where} is the density of mattefr) 0 0 T speed of lighty; i 4-speed of matter movemerngji pressuref; i electric
field.

For dusty stationary and uncharged matter (i.dg=a0, ux = uy =u, = 0 and F; = 0), only one component of the energy
momentum tensor (13) is not equal to Z&e= | ¢>[8].

Therefore, at lowspeeds compared to the speed of light and in the approximation of a weak gravitational field, i.e.
"Q p %IwW,EQ.(12) reduces to Poissono6s equation (1) if the i

=8G/c*ta 2, 07%N6'5 10



In fact, a methodological substitution occurred in this task. It is clear that Einstein was solving a colossally comfgex prob
and it was important for him that in the noelativistic (Newtonian) limitEq. (12) was reduced to the Poisson equation (1).
But this happened due to intricate manipulation of relativistic mass. As a result, a fitting parameter arose, the famdas

= mc?, which was substituted into the classical #iehativistic Lagrangan

0 aw — Ga-.

The constant value rhin the Lagrangian does not affect the equation of motion of a material object, but if this enormous energy of a body
at rest (included in the consideration beyond any common sense) is removed fraagrduigian, then the Poisson equation (1) from the
EinsteinHilbert equations (12) at low speeds and a weak field it will not work. That is, without a purely relativistic correéfion mam
relativistic classical limit can be obtained from the genegdtivity equationd this is a paradox in itself.

As a result, this adjustment led to an incorrect result. If the solutio¥o(2) “@ 7i) to substituteénto the metric with a zero
componentQ p %W

a p —'® W® p L-rw
then this metric will not be a solution Eg. (12) withTeo=}c?and 0 | "Qw
v ooy

In the best casehis metric is the Schwarzschild solution of the vacuum equation Tt

ONobodger st ands g u d esaidRicharhEeynmarand ro ®ne dinderstands the theory of relativity. His-
torians of science say that after the lecture, enthusiastic studeittgdo Arthur Eddingtonfi You ar e t he s

eco
the world who understands the genetfaWwh orbesl aftiirvsitt?yd! 6 Eddi

n
n
Can this be considered Einstein's mistake? Of course not. Firstly, Einstein was sincere in his calculations, becaulse the resu
obtained convincingly followed from the special theory of relativity. Secondly, he completely repeated the logidefrpost

tonian physics, because potential (2) was a solution to the equztion O . Third, this misconceptdi

table. At that ti me, the authority of <c¢classical pédy si cs
from GTRin the nonrelativistic limit, the new theory would not have been accepted.

Thus, the coefficient '85/c* on the right side oEq.(12) was introduced by A. Einstein in order to harmonize the dimensions
of the two sides of this equation, and so that, under the condition of a weak gravitational field, the Poisson equatitth (1) w
follow from Eq. (12).

As a result, by the end of 191A. Einstein and D. Hilbert almost simultaneously obtained a general covariant equation
connecting the metric characteristics of a local region of cundithénsional space with the components oftiesgenergy
tensor of matter

Yoo-YQ  —UY. (14)

Itis forced, by connecting the right sidekef. (14) with the phenomenological properties of unknown matter (terra incognita),
A. Einstein introduced several problems into general relativity.

The first problem of general relativity is due to the presanrcthe right side of Eq. (14) of the substance mass dengitly
a voluntaristic dimension kg/fand with a dimensional consta@t( N E/kg?), which in principle cannot be introduced into
a fully geometrized theory.

Let us recall that kilogranikg) is a subjective, phenomenological concept. Until May 20, 2019, one kilogram in the Sl system
was understood as dridian cilindarsvish@ dianfeterandmeighttofi39.17 mm (i.e., the international



prototype of the kilogram), the vgét of which corresponds to the weight of a cubic decimeter (liter) of distilled water at a
temperature of 4 AC and an atmospheric pressure of 101.
dimension is a purely voluntaristic con¢emd is in no way related to geometry.

The gravitational constant is an extremely small value G = 6.6743f(1B)Y 13\ kg ! which is determined from the
average mass density of the Earth. with a large relative error df #tich has not been reded for many decades. At the

same time, the very density of the mass of our planet is determined by indirect (far from obvious) methods. There is also no
certainty that the gravitational constant G is the same throughout the Universe, and that it dclesnget over time.

An attempt to substantiate the value of the gravitational constant G was made in theBmdaBicke theory of gravitation
by introducing a scal ar p-meanettici Holevdi, withim the framework abtheowj G h t h e

is not necessarily constant, but depends on the shsalar f
theory of gravity reduces to general relativity in the limiting case, a number of its predictions have notrifgereddn
practice. I n addition, this theory has an additional ad]j

constant with another.

The second problem @R is related to the possibility of violation of the nonlocal lawsofiservation. The point is that
conservation laws must have the foi@h [

— T (15)
whereas in a curved space the covariant derivative is equal to zero

Y — 1Y (Y mh (16)
which differs from the conservation law (15) by the amount Y | “Y .

Indeed, the integral over addmensional volume "Y — "CQm is preserved only if theatisfiedcondition [9]

n Q

T (17)

Only for a locally inertial reference frame in which all Christoffel symbols are equal tojzero (), a full-fledged conser-
vation law is obtained 'Y 'YX ® T

GR apologists associated the violation of nonlocal conservation laws with the fact that the Hillsegtrequation (14) is
not complete, because it does not include the erayentum of the gravitational fietd itself, defined by such a pseudo
tensor that:

— QY o m (18

One of the explicit types of pseudiensorti is written in B]:
9 (29)

w

Y e T T R R S N S S S
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However, if the psudoetensorti were included in the right side Bfy. (14), then, according to the logic of general relativity,
this would mean that the curvature of space would be the source of its own curvature with infinitely complex consequences.
In addition, it turned out that all types of psettdasorsix are assoeit ed wi th probl ems s ®¢ch as



because all known pseudiensorstix turn out to be noizero even for a flat pseudeuclidean space, the metric of which is
given in curvilinear coordinates.

The problem of violation of the law of consation of energy in general relativity is also present in another capacity. When
a body falls into a black hole, its energy tends to infinity even when approaching the gravitational radius.

A. Einstein realized that the right side of Eq. (14) is phenotogigal in nature. There is an opinion in scientific circles that
Einstein called the | eft side of this equation a fAMagni f
and many of his followers repeatedly tried to geometrize the-hignd side oEq. (14) by complicating the properties of
spacetime, considering, for example, spat®e with torsion, or space with five (the theories of Kaluza and Klein) or more
dimensions.

Al'l these works are assoe®i @teemdnewirti lz att h @ np rod g rp &\ savilsvs foc dmp
of various attempts to geometrize the righnd side of the Einsteidilbert equation (14) can be found, for example 1ifi [

However, many varieties of geometpbysics face othekinds of difficulties. For example, in neRiemannian geometries,

torsion and nonholonomic objects cannot be the reason for theédongexistence of stable vacuum formations, because
torsion and local spiorsion manifestations can only describe rotatjnortexlike) regions of vacuum that are soliton in
natur e, i . e. existing only as |l ongphasthey mpopenti assopt

The third problem of5R is the following.As noted by V.V. Karbanovsky,ué to thesymmetry of the tensorg Y,
"Q Q.Y Y the EinsteirHilbert differential equations (14) are reduced to a system of ten equdtidgivariable
parameters (i.e. unknown quantities) in there are twenty of these equations

Q Q Q "Q Y 'Y Y Y
Q Q "Q "Q Y Y Y Y
Q * Q "Q "Q q "Y "Y uY "Y 8 (20)
Q "Q "Q "Q Q Y Y Y

Therefore, it is almost impossible to solve these equations without additional conditions and irremovable uncertainties.

For example, let us considéetFriedmansemaitre RobertsoAWalker metric (FLRV-metric), which is largely fundamental
in modern astrophysics.

q O ©o — 10— 100 h (21)

where’Q Tiph p;

at)inscale factor o, intended for transition to the accomp:
allpointsof a homogeneous and isotropic universe, which has t

density} and pressurp everywhere.

Thestressenergyt ensor at each point of such an dideal fluido:

8 (22)

333 ¢ea
S
34544
333

The FLRWmetric (21) is not a solution to the Einstéiiibert equation (14) in the classical sense of the iioedo | ut i on o .
fact, this metric is first constructed from the assumption that each local regiedimedsional space is afseudosphere
with a radiusa(t) depending on time. The equation of such a logaé@udosphere has the form

w W Qu Qw @o h (23)



whereQ miph p8
Mathematical transformations of thep8eudospherequation (23) lead to metric (21).

Next, in order to find out how the volume of eaehsudosphere with radius a(t) can change within the framework of general
relativity, the components of the metric (21) are substituted into the Christoffel symb@g. In turn, the values of the
calculated symbolgs are substituted into the Ricci tensor (5), and the resulting components of the Ritchie tensor are substi-
tuted into the Einstetidilbert equation (14). The result is a system of Friedmanatems

> (24)

wherecfidi are the first and second derivatives of the scale fa¢tpr

Eg. (14), and the Friedman equatiq24) following from it, did not allow the possibility of describing a stationary Universe.
Therefore, A. Einstein in 1917 took advantage of the property of covariant derivatives (7), in parti€ular 1, and in
artide [12] he wrote down an expression with the lambda &ynvhich transforms into the formula

Y -YQ OQ —'Yh (25)
wheresi s a constant called the fAicosmological constanto.

When substituting the components of the metric tensor from the FoiRRWic (21) intoEq. (25), we obtain a system of
Friedman equations with a lambda term

. o (26)
v " an8

Since systems (24) or (26) have two equations, and in the first case there are three urkidoli/ns:T A in the second

case there are four unknowrsiH' ) AT "A. Therefore, it is necessary to add additional equations, such &9r or

n Qm, which are called fistate equationso. There can be
It should also be taken into account tkaan take any ahreevalues 0,1, 1. In addition, when solving dérentialEgs.(24),

integration constants arise, which are also eliminated voluntarily, betteuseundary conditions in these problems are often
undefined.

The main problem, however, is that solutions to the Friedmann equations (26) in the presenaddifional equation of

state” Qn wi | | not be solutions to dhérBdonsedidonvetfuatiaons(?:]
results of solving differential equations. The Friedmann system of equations (26) and the Einstein equation (25) completely
coincide only in ongase, if” Tmandn T i.e.ifu L

The fourth problem of GR is that the equality sign between the space curvaturé@ensdY -YQ and the stress

energy tensor of matter suggests the possibility of formulating as a direobjem (i.e. determining the curved state of the
spacetime continuum with a known distribution and movement of matter), and the inverse problem (i.e., determining the
distribution and movement of matter with a known curvature of the dpaeecontinuum)Such a closed interdependence in

the case of strong curvature ebgace and high energy density of matter leads to insoluble uncertainties and contradictions.
In other words, Eq. (14) and Eq. (25) are partly suitable only for the case of weak gravawarrgy density of matter.



The 1983 Nobel Prize winner Subrahmanyan Chandrasekhab]iwfes not about trust, but about faith@R: AFor the
last twenty years, great efforts have been aimed at testing the lower orders of approxinggiweralfrelativity and Newto-

nian theory. These efforts were crowned with success, and the predictions of general relativity related to the change in the
flow of time at points with different gravity, to the deflection of light rays expected when croksiggatvitational field and

to the precession of Keplerian orbits and, finally, to the slowing down of the orbital period of binary stars in ectéstric or

due to gravitational radiation, everything was confirmed within the limits of observation andremast errors. But all

these differences of GR in relation to the consequences of Newtonian physics amounted to several parts in a million. However,
within the limits of a strong gravitational field, general relativity has not yet received unambigufiumaton... Why then

do we believe this theory? é our trust follows from the
Classical mechanics earned the trust of scientists and engineers after the work of Newton, Euler, andh@aplageits
effectiveness in a variety of applications. In relation to GR, Chandrasekhar speaks only abd#fdittBfillouin in [36]

al so expressed solidarity with this opinion: i Trhatcalgener
theory built on sand. o

The fifth problem of GR is the amazing uselessness of the Eidstibert equation (14) with the rightand side not equal
to zero §s 1) and with the dimensional proportionality coefficientThis greatest crown of huan thought turned out to
be practically useless.

Firstly, the possibility of applying Eqg. (14) is strongly limited by the extremely small value of the Einstein constant
=8 G/lc*a 2, 0 74s8 § k b0 "Mm3incesin tis case the curvature of space begins barely manifest in the presence of
enormous energy densities.

Secondly, only the vacuum equatiovis mand'yY ~¥Q 1 for u 1tcan be strictly solved. The presence of
matter parameters irokitions of vacuum equations is always ephemeral, i.e. they are introduced by "hands" in the form of
fitting parameters or material equations of a phenomenological nature. This is the case when determining the additional peri-
helion shift of Mercury's orbitand when estimating the deflection of a ray of light in the gravitational field of the Sun and
when solving Friedman's equations. In the first two cases, the Schwarzschild metric is used (i.e. solution of the vacuum
equation), describing the curvatureasf empty spaeéme continuum, and the mass of the Sun is inserted into this metric
"manually” as a correction factor.

On the contrary, Einstein's vacuum equations do not have dimensional constants on the right side, so theydpplicaany

tions in various branches of knowledge. For example, A. Einstein himself and his student Nathan Rosen in 1935 proposed to
consider an electron as a merger oftwoggicoopi ¢ fibl ack hol esd, which are descr
schild metrics. This idea turned out to be untenable, but the EiflBteirs e n fibr i dgeso (i . e. , Awor
focus of attention of scientists, because they open up the possibility of interstellar and intergalactic travel, asneell as t
travel, assuggested by the groups of Kip Thorne and Igor Novikov.

I n addition, fistrong gravityo was developed in the wor k.
[13,14,15,16,17,18,19,20]. This line of research emerged in the 1960slaraative to quantum chromodynamics (QCD).

The hypothesis of the existence of fAstrong gravityo | ed
Afhadron bagod model (i .e., the de Skdetereninedimithe momosmolegicdl. | n
constant.

Also, under the assumption of the presence of strong gravitational interaction, analogies between hadrons and black holes of
the KerrNewman type are described. This approach also did not lead to pos#tiitsy but in string theory there is a close
connection between gauge forces and the geometry of spacetime. In some cases, string theorists recognize important analogie:
between theories based on Einstein's general theory of relativity andWikbsmgauge theory (in particularquantum chro-
modynamics (QCDand the theory of electroweak interactions by S. Glashow, S. Weinber and A. Salam).

There are studies that show that with simplifications corresponding to Riemann geometry, the nonlinear equadons of t
YangMi | | s t heory are reduced to the form of Einsteinds va



Other applications of Einstein's vacuum equations are the description of gravitational lenses and gravitational waves, for
which the LIGO and VIRGO collaborations were aveatdhe Nobel Prize in Physics in 2017.

The sixth problem of GTR is the presence of singularities (i.e., tendencies to infinity) in solutions to the-Hiltstein

equation (14) (more precisely, in solutions to Friedmann equations (24) and (26)). Ehereblam remains in solutions of
Einstein's vacuum equations. When the Schwarzschild metric was published, the scientific community (starting, apparently,
with a discussion in the @ Col WihEBiesteid, élad&maa,Pdirce ¥ ®, wiBiec iy ute o @ K
louin, Cartan, Langevin and others scientists) were very worried about the presence of a singularity in it. Many atempts hav
been made to get rid of this problem by moving to other reference systems, but without success. Graylgalfyuied to
singularities, or rather, some of them were hidden in the distant past, some in the distant future, and the rest wene drowned
the bottomless depths of black holes, hiding NKegdheless, t he
the problem remained along with the understanding that the presence of singularities in any theory is a clear indicator of it
incompleteness.

The seventh problem is related to time loops. Einstein's collaborator at the Instithitd fora nc ed St udy23] Kur t
obtained an exact solution to Eq. (25), allowing the existence of closetikenimes. This solution is generated e stress
energytensors , which is the matter density of uniformly distributed rotating dustppa c | e s . G°odel ' s sol ut
a metric tensor in the local coordinate system

(o — ©Q000E m  -Q ™,

where B oohuh  Hy
¥ is a nonzero real constant representing the angular velocity

In this case, the principle of causality is violated. If a closed-likedine returns to the same point from which the movement
was started, then it degdraitbdsamsamlareraidwali bate nt. be Moa me vietr
this line, time is not zero. Thus, we get a closed chain of causes and effects along this line.

Ei nstein was alarmed by the p4]:é8 bvouldbe intefestinghad fisd o@ Whthdr sucho | u t
decisions should perhaps be excluded from consideration
Eq. (25) in itself with a norzerothe stressenergytensor 1), leading to a cemological model of a rotating Universe,

does not cause rejection. The problem is the many paradoxes associated with the possibility of time travel. We now know
aboutEdwardlbenz' s fAbutterfly effectd and uanampletly @andethe futare. t he
Hence the hypothesis about the security of chronology, proposed by Stephen Hae&ingote, however, that mental (i.e.,
disembodied, purely observational) presences in the past and future are not prohibited. Paradmseiated with the

transfer into the past of a material body that can change the course of bystosynall impact. In other words, if traveling

to the future or the past is still possible, then most likely without the transfer of matter thertey i.e. 0.

The eighth problem of GR is related to the illusory nature of matter. V. Karbanovsky, referring to Taimurazov, noted that
within the framework of Riemannian geometry, by choosing the gauge fuff@tiorone can always restt zerothe curva-
ture tensor in a local region of curved space

Y Q =0.

That is, in any local region of curved space it is always possible to switch to a tangent coordinate system and emsure that t
RiemannChristoffd curvature tensoly , and therefore the Ritchie tensér, are equal to zero in this small region.

Letds recall that the main theorem of Riemannian geometr

coincides with Euclidean space up to smal/l 1st order ( wi
the Remannian spadeand the Euclidean space tangent to it in the neighboripofisome poinAit is possible to establish

such a correspondence in which both spaces will coincide up to small ones abd¥etder2To do this, in Riemannian

space, geod&s are drawn from poir in all directions and each of them in the tangent sgade compared with a ray of

the corresponding direction, and then a correspondence between these geodesics and rays is established such that the lengtt



of the arcs of thgeodesics and the corresponding rays are equal. In a sufficiently small area of point A, such a correspondence
will be oneto-one, and this is what we are looking for. Namely: if we introduce Cartesian coordinates, in the tangent

space and assigheir values to the corresponding points of the neighbortibgdhen the following connection will take

place between the linear elements ds of the Riemannian and dsO of the Euclidean spaces:

a o] ‘a -B Y O O O 0 WX B - O O O o o,
wheregnki- 0 for 7- Rp,i= 1, 1®;, 3¢é
Y Q o o 1 1 1 1

is the RiemanChristoffel tensor, which characterizes the difference between Riemannian space and Euclidean space.

Local zeroing of the Riemarn@hristoffel curvature tensor according to the logic of general relativity meanthénatis no

matter in this region, and cannot be, because the equations are tensor. Thus, by choosing the gauge function h”inkj (or select
a local coordinate system), it is possible to achieve that in the neighborhood of a smallEgg(@#4) is redued to an
equation of the form

no—"Y ddd

Thus, the logic of general relativity allows for local zeroing of the energy density (or matter density). At the sarhe time, t
tensor nature of Eq. (14) suggests that if mattéluisory in one local reference system, then it must be illusory in all other
reference systems associated with a given local region.

In a dynamic system on extremals, the increment of action is determined by the exm8ssibldt{ however, if the actio

does not change with time variation, the Hamiltortitamust be equal to zer@3]. The equality to zero of the Hamiltonian
manifests itself in any system that is invariant under a change of time variable. In particular, in the general thativityof rel

the principle of general covariance allows any transformation of variables, including time, therefore the energy ofhany syste
in general relativity is exactly zer@%]. Not only energy as a whole, integrally, but also energy density at any point and a
any moment in time. This phenomenon is described in detail in the monograph by Misner, Thorne & Vtgeler |
H(Q)=0,i.eE=0.

Since in classical physics time is completely defined, energy in the general case isahdd egro, then general relativity
with a nonzero material righhand side cannot, in any limit, pass into classical physics. In classical physics, the development
of the World takes place in global time and any generalization of classical mechanticontais this timeZ5].

In geometrodynamics, the expanding cosmological model is associated with the density of matter only as a parameter, and in
general there are solutions without matter (i.e. 0). The rigid link between the density of matteddhe rate of expansion,
described by the Hubble parameter, is the result of the requirement that the total energy of matter and the energy of dynamic
space be equal to zero. This condition, as is known, is not satis@édibes. It was to eliminateithenormous contradiction
bet ween observations and predictions of gener &5%. relativi

The ninth problem of f#Aglobal timed is closel ywintrogdcton ed t o
of global time associated with any matter (for example, with the ether) is due to the selection of a global reference system.
The solution to this problem faced the need to select the mechanical properties of the ether so that thadsacsior iof

bodies and the electromagnetic field with the ether do not depend on the speed of their movement. It turned out &hat the stat
of rest of the ether cannot be observa#][ Within the framework of general relativity, at each point of the alispacdime

continuum, local (proper, or true) time flows in its own way depending on the zero components of the metric tensor
Qt ® "Q QoRelated to this are problems of synchronizing processes in various regions of spawedas well as

problems with defining the concept of energy in general relativity, since energy, from the point of view of mathematical
physics, is a quantity that is conserved due to the homogeneity of time.



At the same time, it is obvious that thensstency of many natural phenomena is subject to the flow of a single global time,

as is the case in classical ppst wt oni an physics and in the sCDM standard
time flows throughout the Universe. However,there no gener ally accepted answer to
in the gravitational field of stars and planets agree w
galaxies, along with stars, are frozen into space that expands ovei me . But there is no answer

gravitational fields of planets, stars and galaxies with their local times linked with the expanding interstellar sggalakith

time? This is a problem, since metrics can only be corredtghet together with synchronous time at the point of their
contact. Despite the fact that many attempts have been made to construct a theory of gravity with violation of general covar-
iance through the introduction of global time, this problem has notdmeed to date.

The geometrodynamics of Wheeler, Arnovitt, Deser and Mi2&2[7], without additional conditions for time and without

the condition that the Hamiltonian is equal to zero, encountered difficulties in that the fundamental static sflggaaral

relativity: the Schwarzschild metric, the Reissheo r d st r °m met ri c, the Kerr metric t
dynamic form relative to global spatieme [25].

The tenth problem of GR is related to the quantization of the gliavitdtfield. Due to general covariance, the Hamiltonian
in general relativity is equal to zero, so quantization turned out to be imposihlép attempt to construct a quantum
theory of gravity with a zero Hamiltonian led to the development of thetteddoop quantum gravity (LQG theory). This
theory postulates that the structure of sp@e consists of finite loops woven into an extremely thin fabric held together by
various node connections, which is called a spin network. It is assumed tbell giee of the spin network is of the order of
the Planck length

. 20 "
a = plppoem @8

One of the key parameters of loop quantum gravity is the quantized area opevhttwodimensional surfacg, which
has a discrete spectrul@very spin network is an eigenstate of each such operator, and the area eigenvalue equals

o Y ar 00 ph

where all intersectionisof the surfacé? with the spin network are summed up. In this formula

91 Immirzi parameter;

ji=0,1/2,1, 3/2, ... is the spin associated with theilmkthe spin network. The twdimensional area is themg "concen-
trated" in the intersections with the spin network.

According to this formula, the smallest possible 1zeno eigenvalue of the area operator corresponds to the link that carries
the representation with spin 1/2. Assuming an Immirzi paraméterder 1, this gives the smallest measurable area of
~10%6 cn?.

The main role in quantum gravity is played by the uncertainty prin¥ipd & (wherei is the gravitational radius,is

the radial coordinate). From this principle it follows aji. L et 6 s si unbothe Schwatzsehild metric (i.e. into the
solution of EinstWeirm,assaresuwaiobtain equati on

’Q pz_ . ‘(b

Q i Qg i QY 8
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This shows that on the scale & p Tt @ dblack holes should appear, i.e. spacetime must generate quantum foam from
real and virtual black holes.

Of course, we are trying here to explain the essence of loop quantum gravity at a primitive level. In reality, theorists are
attempting to peer intdé deep structure of the void by representing the null Hamiltonian of the vatlmi®) (through the



introduction of Asteker variables and combinations of Lagrangian factors (i.e., conserved displaced connections) with the
SU(2) gauge symmetry group, toget with its closed an algebra that transforms into an algebra of Poisson brackets, from
which follows a closed algebra of quantum operators. The result is a quantum model of empty space with deeply hidden
divergencesAll this complex mathematics complents the standard cosmological model, based on the Friedmann equations,
only on the scale of Planck lengthsp( 1 A [ ) and times¥(p 1 s), which are characteristic of the beginning of the Big

Bang or in the black hole singularity zone

However, moderttechnologies make it possible to experimentally test the dimensions of space @trteast p T cm.

Therefore, today it is not possible to verify the theoretical predictions of loop quantum gravity. Despite the factghat a la
number ofresearch groups around the world are developing this theory, they have not yet been able to come close to practically
significant results.

Even the attempt to quantize Newton's classical theory of gravity encounters numerous difficulties. @uavityrturns

out to be a nomenormalizable theory due to the fact that the gravitational constant is a dimensional quantity. In the system
of u md=t,she gravitational constaGthas the dimension of the inverse square of the mass. The sitisaggravated

by the fact that direct experiments in the field of quantum gravity, due to the weakness of the gravitational inteations th
selves, are not available to modern technologies.

We note that the Algebra of Signatures described in [1,2l&8d¢ly coincides with the mathematical basis of the theory of

loop quantum gravity and the theory of superstrings, but without restrictions on the size of a section of space andthe scale
the objects under study.

The eleventh problem is thtite GR claims that in the Newtonian limit it goes into classical physics, that is, the principles of
general relativity should also operate in pNsiwtonian mechanics, but the relativity of time is not observed in the non
relativistic world.

The twelfth,and perhaps the most basic, problem of general relativity is related to the fact that A. Einstein did not explain:
AHow does the mass of a body, its ener gtyi noef croonttiiomu uam?do
guestion: fbowedoésgtheity arise ar oldoubtfagnhypathesEsy €€i msd ye? d
replaced the effect of gravity with free movement by inertia in a curved-$ipaeeontinuum, but the question of the mech-

anism for generating this cutvee by massive bodies also remained unanswered.

2] Conclusion of the analysis of general relativity problems

The difficulties that resear cher s ve nraceuudh greatenyluetine alsoeel v i n-
analysis is enough tdraw a general conclusion. Almost all problems of general relativity are related to the phenomenological
right-hand side of Egs. (14) and (25).

In this regard, in this work we will use only the Einstein vacuum equation

Y -YQ QQ mh (27)

where s can tdkeandhesval les +5s, (28)

3] Massless geometrophysics

It is necessary not to lose sight of the situation when Tt (i.e. there is no matter), but the Einstein tensor with the lambda
term is not equal to zero

Y -YQ 9gQ O m (29)

For this matteifree case, we introduce conventional massless notation:
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where
0 W is temporary tensign
O fMYhO fjyh'O MY is components of the velocity tension density vector;

"0 PyYh'O PgYh'O PgY iscomponents of the flux tension density vector;
0
o

0 O . ) )
O O O " " " is components @limensional spatial tension tensor.
O O © " " "

In this case, the massless ten€br Ttwill be called the 4ension tensor.

Note that the rotational degrees of freedom, in particular the components of the torque density vector, are not taken into
account in tensor (30). This is the result of sifiqdtions related to the Riemannian approximation.

Eqg. (29) cannot describe stable vacuum formations, since it is impossible to integrate-#eeatemsor field (30) in a curved
Riemannian space to ultimately obtain tensor results, because in thal geser similar t&x. (16)

no — |1 0O 5 0O —8 31

Therefore, conservation laws do not work. This means that just by changing the reference system, you can change the energy
of the metriedynamic system and regulate thigorithm for the flow of intravacuum processes. For classical physics this
sounds categorically unacceptable, but for psychophysics it is a typical phenomenon. For example, if in your mind you men-
tally form an image of delicious food, then this may beoatpanied by real salivation, and a pleasant memory can increase

or decrease blood pressure, etc.

Mentally command your hand to rise, and it will ri3&ought is not material, but it forces matter to do work, i.e. brings
energy into a material system. & bpposite effects are also possible, for example, close your eyes and make 10 revolutions
around your axis in a safe place, open your eyes, and you will see that the reference system associated with yourgnsciousne
is rotating. These are obvious fadtds clear that the nervous system transmits a command to contract or relax muscles. But

it remains a mystery how the nervous system itself receives a command from thought, which can only form illusory images,
i . e. distort | ocahocoontrtdioatecesygstiemssnéso2e

Equation (29) may be needed when considering how to introduce additional energy into the system by mentally changing the
coordinate system and/or reference frame. It is possible that to solve psychomotor problems, Riemameiayn witlonot

be enough, and it will be necessary to obtain Msacemetry equations (kiges1lb and 2). However, when simplified,

these equations must still be reduced to the equations of Riemannian geometry.

We demonstrate this using te&ample of Rieman@artan geometry with absolute parallelism. The Rier@hnstoffel
curvature tensor in this geometry is identically equal to Z28p [

Y 0 Y 0,4 04, 00 00 kmh (32)
where

'Y  is Riemann curvature tensor;

0 0 0 0 is contortiontensor; (33)
0 M

0 -1 |  istorsion (34)



Identity () means that in a geometry with absolute parallelism, the components of the Riemannian curvatu¥e tensor

turn out to be completely compensated by torsion. Moreover, in this geometry, based on the variational principle, the Einstei
Cartan equatio is obtained8]

Y -YQ sQ &h (35)
where

® o000 0 O O U 0 0 -"Q Lo L O is CartanSchouten tenspr (36)
O ¢0 0 isthe trace of the contortion tensor (37)

Eg. (35) looks as if the torsion of space, or rather rotationatimnds the source of its curvature, or, conversely, the curvature
of space leads to its torsion.

However,Ex. (31) imposes a restriction on all extensions of Riemannian geometry, including Ri€adan geometry.
If @ "0 T then according to (31) this formally means tEgt (35) cannot serve as conservation laws and cannot
descrite a stable acuum formation.

Therefore, to describe stable vacuum formations, the Ein€@itan equation & must break down into a system of two
equations

Y -YQ QQ mh
e L L . L (38)
UL L L O U U U -"Q v L U ™

This does not contradi€iq. (35), since’O  mand® 1, thereforeO k @ T

It is important to note that in the Riema@artan space, due to tasymmetry of the Christoffel symbols | , the
Ricci tensor also turns out to be asymmejgl s RBut in the case witg = 0andY; ;= 0, it follows from Eq. (27) that
Re .= 0andRs &= 0, so they turn out to be identically equalYo k Y . This corresponds to such types of rotations and

torsions of the vacuum that do not affect the Ricci teRsgbut they can affect the components of the curvature t&hsor

It is similer to the fact that a certain volume of space rotates in relation to an external observer, but those who are inside this
volume practically do not feel such rotation. For example, being on the surface of the Earth, it is very difficult to f
eel that it is rotating. However, there are effects that indicate the presence of inertial forces caused by the rotatioofl mo

the planet, for example, deviations of the Foucault pendulum, diffstegpness of the left and right banks of rivers, etc.

At this stage of the study, we are interested in stable vacuum formations, which are a simplified framework (foundation) for
more subtle metridynamic effects, therefore it is important to formuladbaservation laws within the framework of Rie-
mannian geometnEinstein's vacuum equation (27) is suitable for this.

Note that in Einsteinds vacuum equation (27) there are n

of kilogram, nor with the dimensional consta@t nor with conservation laws, since substitufi@®g 711 into the left side of
Ex. (31), we have the coincidence of the covariant and ordinary derivatives

nm — g Mmooy mn— 18 (39)

Einstein wrote [2] : AiThe gravitational equation f or e nhedrythatscanac e i
claim rigor.o



MATERIALS AND METHOD
1 Vacuum equations and basic ontological principles

1.1 Equation for constructing a metrigdynamic model of a stable vacuum formation

The goal of fAGeometri zeAdl YyabuamofPhyisgrat Basedi 9snt hdhedevel

of modern science associated with Wi lliam Cliffordos

Another basis othe Algebra ofSignature is the assertion that informatioa fsindamental concept in physics. According to

John Archibald Wheeler's dAlt from bitodo doctrine, al |

This article is the beginning of an attempt to create a fully geometrized coscablogdel without involving the heuristic
concept of matter, which has a voluntaristic dimension of the kilogram.

To do this, we first build metridynamic models of single stable vacuum formations.

Based on the analysis carried out in the introductienuse the Einstein vacuum equation (27) for this task,

Y -YQ QQ mh ( 27Nj)
where

vy L L 1 1 isRiccitensor (5Nj

1 -Q — —— —— isChristoffel symbols (6]

This equation acts as ten conservation laws.

1.2 Einstein's first vacuum equation

Let's consideEq. (27) fors = 0.

Y -YQ 18 (40
Multiplying both sides of this equation B , we obtain §]

QY -YQ Y -Y mh (41)
since’Q 'Q ¢ is the number of dimensions of space.

For anyn-dimensional space (except 2), Eq. (41) can only be satisfied for zero scalar curvati®e Q). Therefore, for a
4-dimensional space (i.e. far= 4), Eq. (40) takes a simplified formg]

Y om (42

The Riccitensor42) , whi ch is equal t o firgteacuom equafioh.l be called Ei

APr

phy

nste



1.3 Einstein's second vacuum equation
If s is not zero, then we multiplgq. (27) by"Q , as a result we obtain
MY -YQ sQ Y -Y & mh (43

whence follows

v —sh (44)
in this casekq. (27) takes the form

Y —s0Q ™ (45)
In the case of a-dimensional spacet= 4,R = 4s, andEq. (45) takes on the simple@te. most optimal) form

Y s 9™ (46)
Eq. (46) will be calledEinstein'ssecondvacwm equation.

1.4 Geometric meaning of the constant

Willem de Sitter showed in [24] that addmensional space can be defined as a conic section-dfraeéhsional singlestrip
hyperboloid, defined in a-Bimensional space by the equation

R U s T (47)
The curvature tensor of such aldnensional space has the forn®,[30]

Y -7 1 Q 8 (49)

The Ricci tensor in this case is equal28][

Y Y —Q oY v—-Q T8 (49
If you enter the designation
$ -, (50

then we get a system of equations

You $0Q, ™™

Yos $9Q, T8 (51

which corresponds to Einstein's second vacuum equatin But in this case, the geometric meaning of the constant
L = K®&=/constbecame clear, whergis the radius of the-dimensional sphere.

Such a 4sphere has radii along three spatial ax¥Z equal toxx = yx = z« = r, and along the fourth time axis the radius is
equal toct = ry.



That is, a given radius is associated with a period of time

t = r/c. (52

The scalar curvature in this case, accordingxo(44), has the form
Y Q'Y 1S —8 (53

The scalar curvature turned out to be proportional to the 12 signs of the Zodiac (i.e., the 12 sectorsdifitheett). Zodiac
(from t Red fGlriewikng beingod) .

1.5 Epistemological and ontological principles

Einstein included several important ideas in Eq. (27) in the form of fundamental epistemological principles:

1) The principle of generalovariance (i.e., the independence of the form of the equation and invariants from the choice of
coordinate system or reference system; in essence, the tensor nature of the equations);

2) The principle of coordinate invariance (i.e., the independence tds of physics from the choice of coordinate system);

3) The principle of equivalence (i.e. local curvatures, movements and accelerations are put in correspondence with local
reference systems). The concept nerfial nfoveméntirucerved spatimd; f or ce o
4) The principle of independence of the speed of light from the reference system (i.e., the unification of space an@time int
single spacgime continuum with a metric of the ford® =17 fi§dt? + dx? +dy*+ dz2= 0);

5) The principle of causality (i.e. any event can have a causal impact only on those events that occur later thallé,a.e. in
circle with a radius of no more than =, whpdedt is the time interval between events);

6) The principle of extremurof action (i.e. the geodesic lines of a curvedigensional space are extremal).

7) The principle of symmetry (i.e., the conditions of namiability, from which conservation laws follow).

8) The principle of relativity (i.e., the equations include aehative quantities, including time).

Thus, Einsteinds vacuum equation (27) t uepisteendlogioalteritageo b e
acquired by science by the beginning of the 20th century, i.e. by the time of the creation of GR

However, these epistemological principles are not enough to use vacuum equatio2)2r) @6) to construct metric
dynamic models of stable vacuum formations. Therefore, we will formulate three more fundamental ontological principles of
the Algebra of Signatures, which are taken from empirically verified philosophical and religious sources.

1] Principle ofinffEA/besroyltuntien gAbtsheantc ecbain appear from emptines
on average the emptinessremas empty. 0 From the principle of fAAbsolute
anceo, which was used in all previous articles of the pr

2] The principl e Adff fmManert hd insgt rciabain robabilitge tdn it iz recessarily te@lized c e r
in a proportion tending to this probability. o Frossiblet he p
solutions to the vacuum equation must be taken into account with thepdpter@robability.

3] The principle oifiCioAldseruaean dfNFtl Nd TfYi miathem®:t generate th
permi ssible to generate a discrete cl os-dyhamic mbdismfistable. 0 Fr
vacuum formations must be discrétdinite.

The following guestion remains opénfi I"Y 1t (i.e. if on the right side of the EinsteHilbert equations (14) there are

no: density of matter, its motion, pressure and electromagnétig, fiteen what fills the Universe, and what is source of
curvature of the spadéme continuum? The answer to this question will be gradually formed below, but now we can answer:
flAccording to the Algebra of Signatures, this world consists of many sablecu s cul ar vacuum for mati c
At the end of this article, Einstein's third vacuum equation is proposed, with the help of which in subsequent articles the
corpuscular cosmological model will be presented and answers to many other gueEstimulern physics will be given.



1.6 Effect of the principles of fAiAbsolute absenced and #

Let us demonstrate the effect of the principles of AAbsoO
mannL e m a-RdbertsoAWalker metric (FLRWmetric) (21). There are four main (ntnivial and norexotic) cases possi-
bleatQ pand™Q  p with signatures and

i

q O Q7 — 10— 1i 0 h (54)
(o} [8Ye) O — o i QER> h (55)
(o} O® 0 S I QER> h (56)
[o] b O — io— 10 h (57)

where @ 0 'Q_iS

Averaging all these metrics leads to a zero (trivial) metric

a -a o (o) (o) = fifdA+ dPPA d@?A sOYAd/ 2= 0. (598

This corresponds to the principle of fAAbsolute absenceo,

Averaging metrics34) and 65) over pairs, as well as metricsgj and 67), we obtain

(59)
B A< ]
o1 e o1 Hd % — 10— ii{ Q&> with signature
(o] -q (9] AW — — 10— i xEOECI AOOOA
where — AE— 8 (60)
In this case, averaging metric) and &7) over pairs, as well as metrics5j and 66), we obtain
BRSC AN
o1 e (o % — 10— ii{ Q& with signaturem (61)
A 4
a -qa Q —  — i Q— 1 i Q&> with signature i
where ——— {E — 8 (62

Within the Algebra of Signatures, the averagegtrics 69) 1 (62) (describingthemetid y nami ¢ st ate of t he
Ainternal 6 sides of the vacuum, respectively) define a c
articles of this project.



2 Solutions of Einsten's first vacuum equation

2.1 Set of metriesolution of the first vacuum equation

Let's find exact solutions to Einstein's first vacuum equat@h (

Y 1 (42Nj))

This equation is considered in many scientific publications on modern differential geometry and general relativity, for exam-
ple, in B, 19, 31, 37]. However, none ofhe books and articles known to the author shows the complete set of solutions to
this equation, or discusses the relationship between these solutions. Therefore, we repeat the sbhyt{dBsitosufficient

detail.

At the same time, this chapter idemonstrate the general methodology of multilayer geometrized vacuum physics based on
the Algebra of Signature.

At this stage of the study, we are interested in stable curvatures and stable vacuum formations, so we will look fgr stationa
(i.e., time-independent) solutions.

Solutions to Eqg.42) for the stationary case are sought in the spherical coordinate fyst@m~, ~3) = (ct, r,q, /) in the
form of metrics:

ds€"2= j"fdei j/dr2i r¥dg? + sinfqgdj ?) with signature(+1 i 1), (63)
or
dsM2=1 j/fd+ j/dre+ r2(dg? + sin?gdj ) with signature(i + + +), (64)

wheren and / are the desired functiongndr.

In metric 63), the nonzero components of the metric tensor are equal to

Q =j% Q =ij’/, "Q =ir3 Q =ir?sirg, 65) (
and their contravariant components are equal

Qo=§'n Qo =1t Qo =irt? Qo =1r'%in 2g (66)

Substituting timeéndependent componen®5j and 66) into Christoffel symbols (6). Next, substituting the obtaipedinto
the Ricci tensor (5), as a result, for the stationary case, three equations are o8fained |

n=il/l,

nji + Ni2 + 2nj/r = 0, (67)
d" (nilr + 1K 7 12 =0, (68)
d7 (il 1A + 1k2=0. (69)

Differential equation§7) has three solutions:

m=In(h+ ho/r), m=In(hii ha/r), m=hz 700 (



wherehs, hy, hz are integration constants. This can be verified by directly substituting each of these solutions Bith Eq. (
Egs. (68) and 69) also has three solutions:

d'=dr= o), T =gr=10 ), §T=§r=1, ) (
whererg is the integration constant.

Forhi=1, hp=ro and hz = 0, solutions70) and 1) turn out to be the same for both differential equatié8s &nd 69).

Substituting three possible solutiod) into metric 63), we obtain three metrics with the same signatuiiei(+):

i P —O® —0a 10— i i Q&kh (72)
q p —O® —0a 10— 1 i 'Q&kh (73
Q O A 10— 1 i Q%N (74)

whererg is the radius of the sphere, the meaning of which will be clarified below.
Performing similar operations with the components of the metric tensor from néeiric (
Q=i jn, Q= Q=2 Q= r?sig

and their contravariant components

Q =ijn, Q= Q=12 Q= r?sig

we obtain three more metrics that satisfy the first vacuum equd@prb{it with the opposite signaturie< + +):

o} p —O® —0a 10— i i Q&%h (75)
q p —O® —0a 10— i i Q&kh (76)
q O™ O 10— 1 i Q&8 (77

Note that ato = 0, metrics 72) and {3) become metd (74), and metrics{5) and {6) become metric77).

All metrics (72) 7 (77) satisfy the first vacuum equatioA?), but only the quadratic fornv®) is called the Schwarzschild

metric, providedo=rq=2G[ /c*(whereM is the mass of the star or planet).

2.2. Additional solutions to the first vacuum equation

In addition to the welknown metric solutions7Q) i (77), there are six more metrco | ut i ons to Ei nstei
equation 42). To find thesesolutions, it is necessary to take advantage of an additional opportunity that was left unattended.
Instead of the original metric63) and 64) with metric tensor components

Q =j%,Q =i j’ or Q =7jnQ =j’

we will start from metrics with components of the metric tensor

Q=m0 =i § or Q=i §in Qo =ji



That is, we will look for solutions t&q. (42) in the form

dsM2= jingde i j7/dr2i r(dg?+ singdj ?) with signature(+i i i), (78)
or
ds"2=1 jTA3de+ j7/dr2+ r¥(dg? + sin?qdj ?) with signature(i + + +), (79

In this case, performing actions similar 51 (69) we obtain four equations

/=in, (80)
i/ (nilr + 1K%) 7 1%2=0, (81
J(/ilr i 1) + k2= 0. (82

Egs.(80)i1 (82 al so have three fiinvertedod solutions:

e/ =§""=Q+rlrg), J’'=i"=@7irlg), J''=j"=1 (83

This statement can be verified by direct substitution of these solutiorniggat(80)1 (82).

Solutions83) are call ed fAi nvert gdidsohutoesql), there is am stered chtidre. f t he r at i

Substituting three possible solutior@3) into the metric 79), we obtain three metric solutions to the first vacuum equation
(34) with the sameignature (+ 1 1):

qa, p —O® —0a 10— 1 i Q&b (84)
qa o, p —O® —Qa 10— 1 i Q&b (85)
q o, O® G 10— 10 Q&S (86)

Similarly, substituting three possible solutio@3)(into the metric 79), we obtainthree more metric solutions to E¢.2j
with the opposite signaturé ¢ + +):

qa, p —O® —0a 10— i i Q&%h (87
a ., p —O® —a 10— 1 i Qekh (89
qa . O™ O 10— i QEDS (89)

As far as the author knows, these metrics have never been considered before. However, they are important, as will be shown
below.

There is another approach t o p(®84p (89)nLgt ug shosv this wsing theecerample 0b f A i
metric (72). Let us fix in the metric72) the value of the variable 1 @& ¢ i 0

(o} P — O™ —O1 10— i Q&EDh (90)



In this case, for anyt | Hb, the metric 90) remains a solution to the first vacuum equatié®).(In other words, if we

considerr as a constant parameter (iie. i w¢ &)iandi is considered as a variable value, then the metric is of the
form
q P —O® —QI 10— 1 i Q&EMh (91)

corresponding to the metric (84), is also a solution to the first vacuum equation (42).

Similar actions <can be(73,¢75)fandr(folespectivay infiormetric85) 8€) and (B&.t r i c s

2.3 Thirteenth solution of Einstein's first vacuum equation

In Al, the f un dtheAlgebtaaflSignatuwaerceé pfl esmwlifat ed : ifAbsol ute Abse
We use these principles in relation to 12 solutigfi®y i (77) and (84) (89) ofEqQ. (42).

Since there are no initial preferences, each of these metric decisions can be implemented wpttoleajuiity P = 1/12.
According to the principle of AFair di sit(#7)abd(g4) (89canbei t i s

realized simultaneously with the appropriate probability. Therefore, we perform the averaging ofdtrese provided that
their centers are combinedrat 0. As a result, we obtain a zero metric

— (dSl(+)2+d&(+)2+d58(+)2+d51('|')2+d&(|4)2+d58(|4)2+ dsl*(+)2+d&*(+)2+d58*(+)2+d51*('|')2+d52*('|')2+d%*(|')2) =

= ffdA+ dPA dy?A sOvAd/%=0, (92
with metric tensor componen@ Tt

Metric (92) is the seventh (trivial) solution of the first vacuum equati
(42), which can be easily verified by substitutii@y  Ttinto this equa-
tion, resulting in the identity 0 = 0.

FromEx. (92) we can conclude that if metri¢g2) 1 (74) with signature

(+777) describe the conditi onuseb) = ‘ vacuun
and metricg75)1 (77)with signaturei( + + +) describe its conditionally -

ficoncaveo state. Su stananly appdareftheir Fig.2:Twodi mensi onal il 11

centers are separated in space (Fég). Otherwise, they completely ityoiceomdavityo sep:

compensate for each other's manifestations.

At the same ti me, even if the centers of t he
toi

Afcyparer e x 0 a
compl etely canceled if averaged over the en e

r space. T
2.4 Coordinate transformation

According to Birkhoffés direct theorem and | sriaselltins i nv e
to the first vacuum equation (42), except for metrics (7@)8), which at infinity tend to the Minkowski metric (i.e., to the
metric of a flat pseud&uclidean space).

However, in general relativity, due to the fact that Bg) (s generally covariant, there remain many possibilities for choosing
other coordinate systems. Of particular interest are coordinate transformations that make it possible to exclude or shift the
spatial singularity ai i in metrics(72)7 (73)and(75)71 (76).

For example, metric7§) can be represented in Krusi@tekeres coordinates



At z—a T i o g @Y h (93)
. ﬁ
wherei 6f is a function that is implicitly defined by the equatipr —— & 6 U

Also, there is no spatial singularity when using Eddingtorkelstén coordinates. In this case, the Schwarzschild metsg (
takes the form

q < 2pP7— "D QUi i QY h (94)

whereb o i‘hhere 1) for a collapsingspherical object (in particular a star);i() for an expanding (exploding)
spherical object;® 1 1 & & p. In this case, the timiike singularity has shifted to the center ( ) of the object
under study.

Georges Lemaitre proposed the following transformation of Schwarzschild coordinajeato coordinates {J } }

vt Qo TSz Oh

§
N T 9
0" Qo —-L2-08
Vg nP 7
In these coordinates, for example, metiig) (takes the form
o e B o < 1 N N o' B B o-To (96)

I n Lema" tre coordinates, the singularity also shifted t
r= 0. The Ldda’ ity esymedahricnous, [ e. bodies stationary 1in
central point. Vertically falling bodies reach the gravitational raditis @t 1 and the center in a finite proper time.

Allvar Gullstrand in [2] and Paul 3]Rlowed that vid® example, [th® met(ik2) can be substituted not in a
stationary form, but in a static form with a cross term

(o P — O ¢ —Q6QI O— 1 i Q&8

All solution metricy(72)1 (73)and(75)1 (76) of the first vacuum equatiod®) can be represented in coordinatésiskal
Szekeres coordinate; Eddingtbinkelstein coordinatet e ma " t r e ;GulistrandH aniantleesv ® Isotrapicabi nat e s
ordinatesHarmonic coordinates.

Behind each of these coordinate systems lies a corresponding process that is subject to separate study, taking inéo account t
methods of the Algebra of Signature, which wil partially outlined in the following paragraphs.

Solutions of the first vacuum equatict?) are sorted into groups that are irreducible to each other. Matcs (77) belong
to different groups, and cannot be converted into each other by any ¢chdhgeoordinate system.



2.5 Subcont and antisubcont

The main features of twsided consideration of 2-/ ms-vacuum are described in articles [1,2]3

I n A7

of

article

[ 2]

and in A4 sabvahf ABoof HBotiGbebpBantth

introduced to denote the outerditmensional side of th®-/ n,-vacuum and antisubcont(short for from "antisubstantial
continuum") to refer to the innerdimensional side of th2*-/ n,-vacuum. These concepts are intended to create the illusion

of two continuous environmentsubcontandantisubcon{ f or exampl e, fi wis)ifor thedpurposedf cdnb | a ¢ k
venience of perception of complexly intertwined imfgcuum processes.

We note once again that the conceptsudicontandantisubconare mental (fictional) constructions of two continuous media,

which are two 4dimensional sides of the same exten®®f mny-vacuum [1,2,3,4]. They look like two mutually opposite
4-dimensional ethers (i.e., two elastoplastic media), respegctivdi whi t ed6 and #dAblackd in color
perceived as alternatives to two spéioge continuums with opposite signature§ (ffi)and { + + +) . Il tds just
of intertwined continuous elastoplastic media it is much easiexptain the essence of itvacuum processes, which will

be discussed below.

In accordance with expression (70) in [3], metri¢d) ( (74) of the formQ "Q Qo' with signature (H T 1)
determine the metridynamic state of the outer side of &%/ mr-vacuum (i.esubcontis a continuous medium of conven-
c @3)io(T7) af theform@ hi s ©a@uéXp withsignatured s + +) deter-
mine the metridynamic state of the internal sides of #i€ mnr-vacuum (i.eantisubconts a continuous medium of conven-
color) (see A4 and A5 in [3]).

ti onal

ti onal

2.6 Application of thei Ab s enc e

I n A9

Iy

Iy

of

Awhiteo

ibl acko

article

opfinciphe finiteo

[ 2]

i t -spaaes with matually oppdsite signatureg cap beiraprelsasita me t r |

sum (or averaging) of 7 + 7 = 14 metric spaces with other signatures.

For example, a conjugate (i.e., mutually opposite) pair of metdcs*")2 and ds*' ' 92 with opposite signature$ ¢ + 1)
and (+7 T +) can be expressed by summing &veraging) 7 + 7 = 14 metricgpaces with signatures given in the ranking
expression (54) in [2]:

+++4+) + (T TT) =0
(i 7T+ + (+++7) =0
@@ 1T +7) + ++7 +4) =0
(++7 7) + (T1T++4) =0
@ +71 1) + (+17 +4) =0
(+7 +7) + (T +71 +) =0
G ++ +) + 1171 =0
(T ++7) + (+7 717 +) =0

(99

Recall that ranking expressions lik&9f are a consequence of the vacuum balance condition (38) in [2].

Similarly, each mutually opposite pair of metrics with signatuires< +) and (# 7 i) from six solutions{2) i (77) can be
represented as a summation (or averaging) 7 + 7 = 14 metrics with signatures:

(100



(+++4) + @7 TT) =
FiT+) + (+++7) =
174+ + (G ++7) =
G0 +i0) + (#+7 4) =
(++7 1) + @GT++) =
r+77) + (*+7 ++) =
+7 +7) + (O +71 4+ =
(T 7T 7)) + (I ++4) =

For example, a mutually opposite pair of metri¢®) @nd {5)

(o} P — O™ ——Q 10— 1 i Q&M with signaturg+i 1 7),
a p — 0 —QqQ I Q— 1 i Q&% with signaturgi + + +)
can be represented as a sum (or averaging) of 7 + 7 = 14 of the same metigcenpithents

Q =(Lirdr), "Q =(Urdr)L, "Q =r% "Q =r3sirdg

and signatures from rankings00)

(100)
ds* 2= "Q dx?+ "Q dx?+Q dx?+"Q dxs? dsTiTi2 =7 °Q dxo?T "Q dx?i "Q dx?i "Q dxs? =0
dsiTTN2=7"Q dx?i "Q dx?i Q dx?+"'Q dxa? dst*12 = "Q dxo?+"Q dx?+"'Q dx?i "Q dxs? =0

dstTT92= "Q dx?T "Q dx?T "Q dx?+Q dxs? dsl++1D2=7 "Q dx?+"Q dx?+"Q dx?T "Q dxs? =
dsiTN2= 7 "Q dxe?i "Q dx?2+"Q dx?T "Q dxs? dst*T92 = "Q dx?+ "Q dx?i "Q dx?+ Q dxa? =
dd' T2 =7 "Q dx?+ "Q dxi2i "Q dx?i "Q dxe? dstT+92 =1 "Q dx®+Q dx?+Q dx?+Q dxs? =

dst’ 2= "Q dx?i "Q dx?+"Q dx?i Q dxe?
dst* 102 = "Q dx?+"Q dx?i "Q dx?i "Q dxe?

ds +T2=7"Q dx?+"Q dx?i "Q dx?+'Q dx? =
dg 792 =170 dx?i Q d?+Q dx?+Q dx =0

dstTT2= "Q dx?T "Q dx®i "Q dx?T "Q dxe?  +  d TTR=7"Q dx?+'Q dx+Q dx?+"Q dx? =0

+ 4+ + + + T+

Summation (or averaging) in ranking®@) isper f or med by columns (see A9 in [2])
We explain with an example why in the case under consideration addition is equivalent to averaging. Let the denominators of

rankings (0J) indicate the average of the metrics in the numerator. Irctgs, the sum of the denominators themselves,
according to the vacuum balance condition, is equal to zero

-('Q dx?T "Q dx®T "Q dx?T Q dx?) +-(2°Q dxo?+'Q dx?+"Q dx?+"Q dx?) =0. (102

Let's multiply both sides of this expression by 7. The result is the denomiimatbesrankingg101)

("Q dxo?T "Q dx?T "Q dx?T "Q dx?) +(z2"Q dxo?+"Q dx?+"Q dx?+"Q dx?) =0. (103

In turn, conjugate (i.e., mutually opposite) pairs eubspaces from rankings(1) can be decomposed in the same way into
sums of 7 + 7 = 14 sububspaces, and this can continue indtfipj if a complete "vacuum balance" is obseryed. if the

sum of the entire infinite set of mutually exclusive metrics with different signatures is equal to zero).

Thus, when solving the first vacuum equatidg)( all three fundamental ontologicalipn ci pl es of @A Absol ut e
di stributiond and fAiAbsence of the finitedo are observed a



2.7 Triads of metrics with different signatures
Within the Algebra of Signatures there are additional opportunities to obtain stable Viaconations.

Let's show this using the example of meti2)(

q P —O® ——A 10— i i Q&% with signature+i i T1).

This metric can be represented as a sum of three metrics with signatures presented msanki see A8 in [2]):
(17 +) (77 +71) (7 +171) (104
+71 +7) (++71 1) (+7 7 +)

(+ +0 1) (+0 0 +) (it

AT (+7 7 1) (+7 7 1)

For example, the first of three rankind94) is revealed as follows

p — O —a i 'QO— 1 i Q&P with signaturgi 11 +) (105
P —O® ——0a 10— i i Q&% withsignaturg+i +i)
P —O® —0a 10— i i Q&% withsignaturg+ +i i)

(o} P — O™ ——0O i 0— 1 i Q&M with signaturg+i i i)

Similarly, metric ¥5)

a p — 0 —Qq 10— 1 i "Q&%o with signaturgi + + +):

can be presented as a sum of three metrics with signatures presented in rankings:

(109
(+ + +7) (+ +7 +) (+71 + +4)
(04 (Ti+4) (1 ++0)
(i + +) (P + +17) (I +7 +)
T+ + +) (7T + + +), (7T + + +),
For example, the first of three rankind96) is revealed as follows
a P — O —0Q i Q— i 1 Qe with signaturg+ + +1) (207
[0} p —O® ——aQ 10— i i Q&M withsignaturei +1 +)
o} p —O® ——aQ 10— i i Q& withsignatureli i ++)
(o} P —O® ——aO 10— 1 i Q& with signature(i + + +)

Any of the metrics with signatures (1 +), (+7 +7), (++7 T)and (+ + H), (i +7 +), ( T + +), which are in numerators
of rankings 105 and (07) is not a solution to the first vacuum equatidi)( This can beverified by substituting the



components of the metric tensor from these metrics into this equation. However, the sum of triplets ofl®8teaosl (L07)
is equal to either metric/@) with signature (# T 1), or metric {5) with signaturei( + + +), whch describe, respectively,
more complex stable ones: convexitysabcontand the concavity of thentisubcont

There are many combinations efietrics with different signatures from the signature matrix (32) in [2]

i Q@i h , (109

which in sum lead to the signature of the Minkowski spacediilecon} (+ 7 7 T) and the signature of the aiinkowski

space (i.eantisubcon) (i + + +). The possibility of application and meaning of these combinations will be revealed in sub-
sequent articles of the proposed project.

2.8 Averaged metriclynamic state asubcont

2.8.1 Averaging subcont metrics

Letds separatel y(7diomsi der three metrics

p —O® —0a 10— 1 i Q&kh (72
Q p —O® —0a 10— 1 i 'Q&kh (73]
[o] O®W A 10— i i Q%N (74N

which describe the metridynamic state of the outer side of ®¥e/ n-vacuum (i.esubcon.

The third metric T4) is a special case of the first two metri¢®)(and {¥3) for ro = 0, and describes the state of the original
(i.e.,uncurved local sectn of thesubcont

Both metrics 72) and {3) are solutions to the same vacuum equa#@ (nder the same conditions. There is no reason to

prefer either of them, i.e. each of t hfeoslel onweitnrg ctsh ec apnr ibne
distributiono, we wi || consider the result of their aver
a -qa a O —Q I O— 10 "Q&%o (109

with averaged components of the metric tensor

P n T 1T

v &

Q & LI
T p T

g T T ] PO

The zero component of the metric $enin the averaged metritq9) is equal to one'Q p), which means that timels
global.

In a curved 4dimensional space with a signaturd (i1 ), the distance between two events with different r, but with the same
other coordinates, is determinby the integral §]



. Q0B

(110

If "Q =1 (1 ro/r)'t from metric 72) or "Q =1 (1+rg/r)'! from metric ¢3) is substituted into integral {0), then such an

integral cannot be taken in elementary functions.

By substitutingQ into the integral 110 from the averaged metri¢@9), it is possible to find an atytical solution

Averaging two solutions of the vacuum equati¢i?) (vith the same signature (#+i 1) led to a meaningfuesult.

Let's first find the size of the segment between the poit© and ra =ro:

i . M pi 08

(111

(112)

The length of this segment is equal to the radius of the cayignd the imagiary nature of this result suggests that the

averaged metriclQ9 does not describe the properties ofshbcontinside a spherical cavity with radius In other words,

the domain of applicability of metrid Q9 starts fronro and extends to, = ©. In this case we have

[ I b 18

If the studiedsubcontrea were not deformed, then the distance betw
the pointsr, = & andri = ro would be equal torz T ri =82 1 ro, and in
our case it is equal to valu@¢1d), subtracting one from thether, we
find

b i b i i 8 (119
The result obtained shows that técontis compressed by an amour
~ ro in all radial directions, and the reason for such compression is
to the fact that it i s frgdThslpdka
like an air bubble in the liquid (Figure 3).
2.8.2 Relative elongation of subcont

We will judge the distortions of the subcontact region under study b
relative elongation (see expression (41) in [3])

a p. (115

In this case, the relative elongation for each coordinate is determine
expressions (47) in [3]

a p — ph

where

(113

Fig. 4: Graph of a functiorf117)a

(119

wi t h



"Q are the components of the metric tensor of the curved section siftthent
"Q are components of the metric tensor of the same section siiltlcentefore curvature.

Let 6s s ub s tli6tthe tomponent¥) o frob xhe avéraged metria @9), and the component® from the origi-
nal metric 74), as a result webtain

a — — p, G m a TL (117

The graph of the functioa qo/r, with ro = 1,is shown in Figure 4. At=ro, this function tends to infinitgy/r = o, and
atr<rgpi t becomes i maginary, which once again confirms the m

Thus, averaging metric3%) and {3) leads taa metriecdynamic model of a stable (conditionally convex) vacuum formation
of the HAspherical cavity in a liquido type, whereas 1ind
confirms that averaging metri€g2) 1 (73) or (75)i (76)) is not meaningless.

2.8.3 Twisting into subconthkraids

In A5.2 in [3] it was shown that i f two metrics (i.e. qu
q -a o h (118
then this corresponds to a segment of & ahdiub.ITee sdgmdnts x |, CC

of these spirals are always mutually perpendicular to each'@herr ' (see Figire 10 in [3]) and can be described by
a complex number

(o' —d 00 (119)

W
the squared modulus of whichégqual to the averaged metricl@).
Each of these fthr eahdeadid cAnd c gassw'ellsasi Sandl Al t a(see Figurb 10 in [3]).

Then the spiral is described by a system of two conjugate complex numbers

g % —a ° o °h (120)

=
i)

Qu
Ou

ol o] 66 00 66

Vic

the product of which is also equal to the averaged m@ttig).

In accordance with expressions (55(59) in [2], the linear elementd d ‘A in metrics {2) and {3) can be repre-
sented in the form of spintensors or in the form affine aggregates (i.e. affinors, essentially spirals)
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In A5.2 in [3], it was pr oposlé8Bda2brad cal | the averaged met

Thus, according to the classification of thlgebra of Signature, the averaged metii6g) is a 2braid.in which two Iine_s
(ithreads) i AT &  are intertwined, defined by affinor¢121) and (122, or four twisted suttinesa i h
o %y °f120.

Ac cor di GofthigadicleAeach of the metricg) and 3) can be represented as a sum of sevensethics with the

signatures of the left ranker from the ranking expressiod) (with probability 1/7, which, in turn, can be are presented as a

sum of subsubmetrics with a corresponding probability of 1/46nd such a fideepeni ngo with
continue indefinitely.

Assuming that each strhetric and susubmetric, etc. defines spiral lines, with a "col@drresponding to their signature
(see ranking expression (70) in [3])

(123

Red (+F+++) + (T T7T71) Anti-Red

Yellow (1 77T +) + (+ + +7) Anti-Yellow
Orange (+1 7 +) + (i + +17) Anti-Orange
Green 7T +7) + (++74) Anti-Green
Blue F+70) + (7 +4) Anti-Blue

Indigo (i+717) + (+7 +4) Anti-Indigo
Violet (1 +7) + (I +7T +) Anti-Violet
White ~ (+7 T 1)+ + (i +++).  Anti-Black

then the results obtained in thgaragraplcan be illustrated by atwd i me n s i o n a | -dinieasionatstaldle vacbtuma 3
formation of the fAspherical cavwity in a |iquidd type, sh

The intertwined fabric of the spatiene continuum of the Algebra of Signature is in many svaiynilar to the spin network
of loop quantum gravity.



Fig. 5: Fractal illustration of a-2limensional slice of a-8imensional stable vacuum formation of
the "spherical cavity in a liquid" type, consisting of an interweaving of many lines (“thredd#fferent "colors",
which are more and more elongated as they approach a sphere with &gadius

28. 4 Movement of subcont | ayemedum(i .e. HAwhitedo el astopl ast

From the previous paragraph it follows that two metritd and {3) with signature (4 T 1) determine the metridynamic
state oftwo4d i mensi onal spaces, which are intertwined througho

According to the f or mofthe Algdbraos Signdtured28t(ar @) n [8]f, both of dhese $pmaes
have a white fAcol or 0,i7 b).eTheacioe, dor tasity, ot ua assuinegtimbnei®) @escribes an

elastoplastic pseudme di umwb f t @ a&subcany, anq roetric 13) describes a pseudoe d i u nb-wdfi t @ 0
color (orb-subcon.

Now |l et's I ook at howetdhesns oelmdyttopl astic fApseudo
In A6.2 in [3], several ki n esded?/ g-vacuansveeee camdideredot i on of | ay

For metrics 72) and {3), thefirst case is suitable, i.e. metric (91) in [3] with signaturé {+)
[o] p — O G 10— 1 i QED%, (1249
since in this metric, as well as in metri@2)and {¢3), the components of the metric ten@r ="Q =0.

In turn, metrics 75) and {6) with signature i( + + +) (according to classificatiorlZ3): elastoplastic pseudmedia of
fia-b | ackbblamdk @ a&amtisubcontndb-argisubcon}, corresponds to metric (91) in [3] with a similagreature
(T ++4)

a Zp —0® QqQ TQ— i i Q&ho. (125



Let's comparéQ in metrics 72) and (124), as a result we get

p = P —

from where we determine the campionedmaum(dcdsur@ntvel ocity Vv

) — or 0 — Q— or Q@ —, U m, 0 L (126
Let's comparéQ in metrics {3) and (24), as a result we get

p - p —,

from where we determine the cbwmpionhedmadum(debsub@ntvel ocity v

0 — or 0 —, U m, U T (127

We also comparé& in the averaged metrid 09 and in the metricl24), as a result we obtain for tlsebcontspeed on
average

p p — ord mho mh U ™ (128

According to Exs.126), (127) and (28), in all radial directions the average speed ofatrsubcont( i . e. , t he HAwhi
psewo-medium) is zero

O ~0 0  Tmord _ Gl 8ln — g (129

From Exs. 126), (127 and 29 it i s @&Wwaé a pseuddmadium é-subconfiflows in the form of thin streams

(currents) from all sides to the edge of the spherical cavity along many spirals, i.e. wrapping around all radial ¢seetions
Figure6a), and ato = r, reaches the speed of lightin this@ s e , b-vi hhiet efid -medsim G-gllocon) flows out in the

form of thin streams (currents) from the edge of the spherical cavity in all directions along many spirals (winding around
radial directions), starting from the speed of light@t r, anddecreasing on the periphery to zero. Taken together, the
fia-wh i t ebwhinded currents are t wi st ef@h),whith ean awnage,anseach lgcaldegianb | e
compl etely compensate f oris,ia@achiocabregioe(ouisisle ammpherical cavitytwéhtradjosn s . T
a balance is maintained between inflowing and outfl owi ng
double spirals, the relative elongation of which was discuss&das.

When extracting information from a set of metrig®)(and {3), we see that the greater the local stretching of the white
it hr e a dsabdontadwe tppreach the spherical cavity (Seg117) and Figure 4), the greater the speed of theeats
fl owing al ong &xséla6andiiMmancFagdreda)). ( s e e



9 B)

Fig. 6: a) a-white pseudemedium @-subcon} flows in the form of thin streams (currents) in spirals to the edge of a spherical cavity with
radiusro, gradually increasing thg@eed from zero to the speed of light ¢, wiHehite pseudemedium p-subcon} flows out in the form

of thin streams (currents) in countggirals around all radial directions from the edge of a spherical cavity with radatarting from the
speed of light; b ) -médivim flotv eud anc flowl in $pibals arcukddall radsakediredtions to the edge of a spherical
cavity with radiugo

The speed and acceleration of theudcont and 4subcont can be studiedton the basis of the simplified kinematic model
(91) in [383], but on a more sophisticated dynamic model r
extensive study to this. Therefore, we will limit ourselves here to only a kireeommsideration.

As was shepwrath A@rr entawhliotweion gt harl ecantgy latinidee @il ommge @ach ei i an
(bundle) of seven suburrents flowing alongsub hr eads wi th fAcol orso (i . eofexprest h si g
sion (123 (or (70) in [3]). In turn, each suturrent is a bundle of 7 stdubcurrents, and this continues ad infinitum (see

A B).

The fl ows of many i-cnutrerretmisn eadl ofincgo | sotrreedtoc hseudb a rggre & wi st ed

As already notednpviicohmeerts pb-lkeadreents asermentabcortstructiena @.e., a fig-

ment of the imagination). Here we have used these concepts only to help thinking understand the essence of mathematical
modelsin terms close to our sensory experience. This is a clear difference in the interpretation of the Al§hratofes

of zero components of the metric tensor compared to the general relativity of A. Einstein. The zero components of the metric
tensorQ and "Q "Q are here associated not with the change in the flow of time, as in general relativity, but with the
movement of pseudne d i u ms (3}.dMke illdsidn oh & movingleformed continuous medium is more acceptable to

our perception than the illusion of @ange in the flow of time. The fact is that time is a very complex andvaiukid
philosophical category, and we do not know how to measure it. Humanity generally does not have a single instrument capable
of measuring time, which is given to us as aseeauf duration. Only celestial bodies (planets and stars) allow us to navigate

in real time. However, mechanical or electronic watches do not measure time! A watch is a complex technical device that
ensures fairly stable rotation of the hands. They allmwo synchronize various processes, but the clocks do not measure
practically any time (i.e., the duration we perceive). All such devices are stable synchronizerfréigeiency generator, or

a frequency standardisvith a certain error. Likewise, we dmt measure the real extent of Being with rulers, but only the

di stance between objects or the sizes of the objects the
and critical essay on its dehime Teohpicakspnthoonizens (whidh & call cloakd or n o t
stable frequency standards) can indeed produce clock frequencies differently, depending on whether they are moving relative
to the physical vacuum at high speed or not, because these are differesnisefgheir existence, and this may be consistent

with the conclusions of relativistic mechanics. However, we note once again that these clocks have practically nothing to do
with the complex and unevenly flowing real time (i.e., the duration of Exi¥tertuerefore, it is difficult to perceive the
distortion of technical time and the curvature of technical space in the foundations of the fundamental theory. In ather word



Minkowski's spacéime continuum is a real illusion constructed by the public cimusness. Whereas intuition treats the
extension of real Being, as a continuous medium capable of deformation and at the same time moving at an accelerated rate,
with great confidence. At the same time, the mathematical model under consideration shdvesltlieformation of the
pseudemedium is inevitably accompanied by the emergence of a local flow, and vice versa, flows of thenpskéuwmto

cause its deformations. On the other hand, the interpretation of the results obtaineecasvatdre of the spcetime con-

tinuum, or as a 4listortion of an elastoplastic pseuaieedium, is equivalent in terms of the degree of our confidence in the
perception of the surrounding reality. Therefore, the elastoplastic or spatiotemporal interpretation of the calcakuilts

are equivalent, and depend on the convenience of their use in solving a particular problem.

At the same time, the elastoplastic interpretation has one undeniable advantage, since in this case, within all aréas of metr
dynamic models of vacuuimrmations and for all vacuum formations included in the general consideration, one global time
can be introduced. At the same time, against the background of the globaltispaa®ntinuum, the parameters of the
4-strain of a contiuous elastoplastic pseudoedium are set everywhere.

2.7.5 Averaged metrdynamic state of angubcount

If with metrics 75) 7 (77) with signaturei( + + +):

q p —O® —aQ 10— i i Q&D%, 75Nj)

(o} p — O™ —0a 10— 1 i Q&h  (76N))

o} O®W T 10— i Q8% 77

perform similar actions (75) (91), then we obtain a metritynamic modebf

exactly the same, but opposite, f
mation of t heawistpyheirn call iaqquaiidd ty m
a -d o O —a 10— 1 i Q&M (130

and A b-&nisabkodindb-antisubconturrents intertwined into bundles.

28. 6 Three possible scenarios for i
ispher iccaavli taynot i

The condi Fig. 7: lllustration of the "cavity" and t he

t_i on for maint ap'rinni_;i)lmogAbsanata_ “anti-cavity" dance of death
absence) dictates three main possi t he
cavity in a liqutcdwviagpdia fiephenaim

1]. If the cavity(72)7 (74) and the anttavity (75)1 (77) occupy practicajl the
same volume 0£%-/ nn-vacuum (i.e., they are practically combined in coort
nates and time) then they completely compensate for each other's manifesti
The most Il ikely scenari o f orsedrigues
7 and8), as a result of which they lose energy in the form of wave disturbai
and disappear (annihilate).

21 . | f (e (7Maadi t hdaka Vi@t 7)exist simultane- Fig.8:iCavityocawnidty

ously, but are separated irdBnensional space, then, when averaged dwer spaced apart

entire space, they also completel each
Such #fAconvexityo and #Aconcavityo .._.__. __. .. . _ __._._.ds ea

merge again in the fidance of deatho.



3] . i Ca)v (714) wmod -dani(7bB)y@7)can be spaced in ti me, mai ntai ni ng
they should flow into each other with some periodi-city,
Finkelstein collapsedd).

Note that if we strictly adheretoh e princi ple of fAFair distributiond, then
with a probability of 1/3.

At this stage of the study, it i s nodandl eeanr awhsaitmidilsari nsst

cavity 0 ? Anot her problem is this: it turns out tdR)dherearsn t he
only two mutually opposite cavities. There is nothing else, but where is the huge variety of entities inhabiting thédfeal wor

In addtion, the presence of a singularity of the tgpe oo/r Y @ raises doubts.

Next, an attempt will be made to answer these questions.

2.9 Filling a spherical cavity

Weonsi der t he #84n (8@ with sighaturenteitid.i c s

qa o, p — O™ —0a 10— i i Q&E®h (84N))

q . p — O™ —0a 10— i i Q&®h (85N))

G, O G 10— 1 i Qs (86N)) |
With these metrics it inecessary to carry out a full analysis, which was carr i
ﬁel:eF i n  A2. 2 iwT4) but wen eill focusool the(most basic aspec

Let's consider the result of averaging the meti@$ &nd 85)

(131
a ., -4, (O W —a 10— 1 i Q&%

To determine the relative lengthening of gwbcontin this case, we sutisite L5 |‘ ‘| 1
into Ex. (81) the component@ from the averaged metric (92a), and the col ) \
ponentsQ from the original metric O ,i adlp result we obtain 1 | .

8 — — p, a4 W a m (132 N N

The graph of the function of radial relative elongation of sibcont(132  Fi9. 10: Combining the graphs of the rela

. . . - tive elongation functionsl( 7) and (32
a aq/r, withro 1, is shown in Figre9. of thesubcont

It is obvious that the averaged metric (92a) describes the deformation and
of thesubcontinside a spherical cavity.

In Figure 11 shows a combination of graphs of the relative elongation functionssoibitent(117) and (32), both outside
and ingde theconsidered corpuscular spherical vacuum formation.

Now it becomes cl easolutiwisglifi86npnveft Edosmetndssfirst vacuum
solutions may bring clarity to that region of space that was hidden bileistentHorizon of the Schwarzschild metrics.



However, ar = ro, both functions of the relative elongation of the subcbh?)(and (32) tend to infinity ¢o/r = a). This
suggests that despite obvi opoblens assogiated svith singolarifies rerhainng t he fb

An attempt to solve the problem of singularities will be made in the next article of this project, using Einstein'subimd vac
equation.

A similar avedado gmeldriiB8) svith@ignatuesi( t €+) leads to a metridynamic model of the core,
which fills a spherical cavity in a stationary defornsedisubcon{ see A2. 8. 5) .

3 AveragedE i n s tsecond Gasuum equation

3.1 Averaged vacuuemuation

Let us consider the system of Einstein vacuum equat&i)s (

'Y"Q”Q Sp!‘%’?’Q T[F]

Yoo s 0 T8 (133

Each of the equations of this system has the righte to be
of AFair distributiono, we wil!/|l |l ook for a solution to t
Y € sQ sQ mh (139

or

Y €Qs s mh (139

where according t&x. (50)

S — S —h 17 radius of the first spherer i radius of the second sphere. (136

From the point of view of conservation laws, the averaged vacuum equaBidnh@s the same properties as anyhef
equations133), because the covariant and ordinary derivatives of the tensor on the left side of this equation are equal to zero.

nY €sQ €sQ €2 €3 T8 (137)
When considering the vacuum equati@B%), three possible cases are identified:

1). Ifs s , thenEq.(135) takes the form of the first vacuum equat{d®) Y =0.

2). Ifs S s , thenEg. (135) takes the form of the second vacuum equation

Y €s Q m (138
3).Ifs s Y, thenEg. (135) takes the form of the Einstein tensor equal to zero

Y €YQ m (139

This equation, according to expressiof®) ( (42) for 4-dimensional space € 4), in any case (+) of { again takes the fm
of the first vacuum equatiod ).



3.2 Solution of Einstein's second vacuum equation

3.2.1Metricssolutions of Kottler de Sitter- Schwarzschild and Reissneordstrom

The most interesting seems to be the third;seifsistent case, when s 'Y, but at this stage of the study we only
knowthatEg.139 r educes to Einsted2dnbdsardrists vacluwtm cecmulavenal(r
this article.

Therefore, let us consider solutions to the second vacuum equigig)n (

Y s Q mh (140

wheres € s , heres ai .

For the stationary, spherically symmetric case, the solutioBg.t(140) are five metrics with signature {+ 1)

q p — — O — 0= i Q&% , (141
o p — — O — 10— i 08k, (142
(o} P — — O — I O— [ Q&M% h (143
(o} P — — O — 0= 0 Q&% , (144
o O A 10— i QD% (145

wherei i A A andi A H H areintegration constants (i.e. constant metric parameters) with the dimension of
distance.

A system of these metrics determines the stable rgtriamic state of theubconf(i.e., the outer side of tH#8-/ mp-vacuum,
see A4 eamnd3))Fi gur

Also, solutions tdeq. (140) are five metrics with signaturé ¢ + +)

o p — — O — I O— i Q&% h (146)
o} P — — O — I 0O— [ Q&M% h (147)
o} P — — O — I 0O— [ Q&M% h (148
(o} p — — O — I 0O— i Q&M% h (149
(o} O O i O— i Q&% . (150)

A system of these metrics determines the stable mayriamic state of thantisubcon(i.e., the inner side of th&-/ mn-
vacuum).



Friedrich Kottler first wrote down the Kottler metric of the fornd 8L

(o P — — O —— | 0 | QD h

inarticle[34 , which was published in March 1918,
ity.Inthecase:q= 2 and i 0, t he K a3 hedomes therSchwarzschild(metric

(o} P — O™ —— 1 O~ i Q&% 8

In another limiting case:al 2 and = 0, the Kottler metric (43) becomes the de Sitter metric

(o} P —O® —— i O— i Q&% 8

In the third case: 4= @ and KL= 0, the Kottler metric (43) takes the form of the Minkowski metric

(o O A 1 0— i Q&% 8

Therefore, the metriesolution 41) 7 (144) and (146) 1 (149) of the second Einstein vacuum equatibfd{ will be called

the Kottler- de Sitter Schwarzshild metrics or, in short, KdSShetrics.

It should be noted that solving the Einst&iaxwell equation in vacuum
Y — 00 -"Q'0 "0 h where™O 'O ——, Qis electric charge.
isthe ReissneNor dstr°m metric

o p — — 0 ® — 1 O i Q&% , wherei —

In this metric, the third termn ji is inverted with respect to the similar third ternj i  in metrics(141)1 (144) and (146)

T (149).
Eqg. (152) can be represented as vacuum equafidf) (

Y s "Q 1 wheres aji oji hhere the symbal 1 isintroduced.

This means that the second vacuum equatfid) (may have five more solutions with signattirer(+ +)

a, p— — OB ——— 1 0 0,
o, p— — OB ——— 10— (0%,
o, p— — OB ——— 1 0 0O
o, P — — O —— 10— i Q%o ,

al

(14N;j)

mo st

151)

(152

(153

mme d i



and five solutions with signature ¢ + +)

q, p — — o — I O— i Q&% h (154)
qa, P — — O — I 0— | Q& h

qa . P — — O —— i Q— i Q&% h

qa, p — — ol —— i 0O— | Q&% h

a, O™ A 1 00— i Q&% .

3.2.2. A complete set of metrigglutions to Einstein's second vacuum equation

If we carry out an aalysis with metric§141)i (145)si mi | ar t o o bt ai(90)71O4) thenwithi e rit ed 0 met
i i i di i i i i , we obtain the following four sets &bttler - de Sitter- Schwarzschild
Reisner N o r d snetriéssolutionsof the second vacuueguationsin short, KISShRNnetrics with signature (#71 1):

M7 set —h— d,

q p — — ol —— 1 0= {080k , (155)
o p — — —— 1 0= [ 080k ,

o1 p — — G —— 1 0~ | Q&% h

(o} P — — O —— 1 0 0%

a O® A i 0— i Q& ;

H®¥ set —h—

qa, P — — O —— 1 0= {080k , (156)
a o, P — — O —— 1 0 0%

(O p— —0® —— 1 0= {08 h

a o, P — — O — I O QD%



VO set —h—:

a p — —0® —— 1 0 0%, (157)
a .. p — — —— 10— i 080k
(o P — — O — i O— | 8Q—% h
a .. p — — i 00— i Q& ,

H Nj(i 88t —h— :

d... p — —OD® — 0 i Q&% , (158)
d... p — —OW i 0— i Q&% ,

D, p — —O® — i 00— i Q& h

d... p — —OW® i 00— i Q&%

A similar analysis of metrics (104) (108) leads to the following sets of metrics with signature ¢ +):

M7 set —h— :

o p — — O — 1 0= i 08D (159
a p — — G —— 10— 0 0ED% ,

a p — — o — i 0— | Q&% h

q b — — O™ —— i 0 | Qe



qa . P
(O P
(O P
(O P
qa, [8Y00)
Vi set —h—:
q .. P
qa .. P
qa .. P
qa .. P
qa L, [8Y05)
H®Nji set —h— :
q ... P
a .. P
qa .. P
qa .. P

Q

o

3.2.3 Fortyfirst metricsolution

Averaging of all 40 metricgl55) 7 (162) withi

leads to the eleventh zero metric

—B

D

11809

(S

R O

A

nmX— nd "Q&%o

Q& ko | (160)

QDo

Q&EDko h

QDo

[ Q& | (1612)
[ Q&L%o h

i Q&%

[ Q& | (162)

QDo

‘Q&Wbo h

QDo

i i i andi i i i i

mh (163)

which is also the trivial (fortfirst) solution to the second vacuum equatidadj.



3.24 Metric-dynamic models of de Sittekernel and antikernel
Let's consider a simplified case when
i i i i i and i i i i i =0.

Then, when averaging metrigg41)and(144), as well as metrics 4R) and (43), only three de Sitter metrics with signature
(+7 7 7) remain

o} P — O™ —— i 0 i QD (164)
o P — O — 1 0O— i Q&% (165)
o O®d A 10— i Q&% , (166)

which describe theubkontin de Sitteé kernel.

Similarly, when averaging metrics4@) and (49), as well as metrics 4¥7) and (48), only three de Sitter metrics remain
with signature (4 T 1)

o P — O —— 1 O— i Q&M% h (167)
o} P —O® —— I O— { Q&% h (168)
o oM™ O i 0= i Q&% , (169)

which describe thantisubkonin de Sitter kernel.

The main capabilities of the Al gebra of Si gnatdynamécs ( Al s
model of 0 spahnetriiccaavli tcyaviint ya | irigs@7R)d @7).boased on a set of me

All these methods are also applicable to the set of mdttitEk) i (150). However, we will not repeat here a complete
analysis of these metrics, since this c apossibitiesofpesented done
in the Algebra of Signatures [1,2,3,4]. Let us note only the main features of the solutions to the second vacuum equation.

3.25 De Sitted kernel

Averaging metrics (@4) and (B5) leads to the metric (in terms of Alsigna to thud-
contact2-braid) ﬁ 1

Q O —— 1 0= i Q&% 8 (170) '
The zero component of the metric tensor in the averaged métficiglequal to one Figzj 11: Graph of the fur;;;tion
(Q p), which means that timtis global.




Let6s substi t'Qt fomthh metric @ohipto thednteyral {10 | | |
‘ |

, N QB | ;

As aresult,we get o3

i o . R
y 3 -2 0
——08 ‘
3 0
l l

This integral is not taken in elementary functions, but numerical integratiir a2
allows us to obtain the distance functeshown in Figire 11.

We substitute the componerifd from the averaged metric{@) and the components
"Q from the metric (66) into the expressions for the relative elongatibhg]

. Fig. 12 Graph of the functiort
P8 (118 (120), i.e. relative elongation of th
subcontn the radial direction.

As aresult, we get
a mh « — — p, O m a TL a7y

The graph of the functiod , which determines the relative elongation of $hbcont
in the radial direction at= 2, is shown in FigureZ From this graph it is clear that th:
relative elongation of theubcontin the center of such a stable formation is close
(1 1) (i.e., thesubconis compressed almost to zero).

Starting fromi 1 j Vg, as it approaches the periphery of Keenelwith radiusro,
thesubconts greatly stretched, andtat reits stretch tends to infinity.

Fig. 13: Radial counter currents of
Letds compare the zero componeifds in metrics(164)and(165)with the zero com- a-Subkontand b-subkont twisted into
ponent in metric{24), as a result we obtain: double helices

- for metric (164)

1+r2r? = 1+viaP Y via™2= c&%re? Y v = crlr; (172

- for metric (B65)

17 r2re? = 1+ VMY V™2 =1c%re? Y v =T crlro. 173
From Exs.(172) 7 (173 it is clear that (by analogy with Ex€L26)7 (129)i n s i dsebcdntkeend fihe a-subcont and

b-subcont currents move towards each other in all radial directions along two threads of the double helices (s&g Figure 1
Equal in magnitude, bugpposite in direction, the radial velocities of stisubcontandb-subcontcurrentsvia™ =1 vipin

t he ¢ entseconterndot lf er=@,see&kigured) ar e equal to zero,kerrdd dwiat ht he

radiusro they move at the speed of light.



Just as it 8&Zasubcmamdbisubdomtcurr&rits. consist of suturrents rolled into bundles, which in turn
consist of sulsub-currents coiled into bundles, and so on until infinity.

The situation seems mor e phy sibcoalderndsh
rotates. In this casehea-subkontotates at the periphery of thernd at the speed of
light via®)(ro) = f(Figure 14). Then it flows along large spirals with deceleration to t
center of thekernd, wherevi,™ (0) = 0 practically stops and turns intdaubcount

In turn, theb-subcontflows along large spirals from the center of the nucleus w .
acceleration, starting from the spegsf)(0) = 0 and ending with rotation at the pe
riphery of the nucleus at the speed of ligh{)(ro) = f(Figures 13 and 14, where it
turns intoa-subcont Thus, intr&kernd ab-subconti pr ocesses o0 be
maintain the highly deformed periphery of the di#e® kernd in a stationary state. -
In this case, the reason for the strong deformation ofubeontat the periphery of
the core turns out to be associated with centrifugal inertia.

I't's like Kurt G°del's spinning uni cent
Only in the case under consideration, the centrifugal inertia associated wittratierc
of the subcontentde Sitter kernkeopposes the elasticity associated with its def
mation. In addition, inside the de Sitiekernd there is not one generab-subcont
rotation around one axis, but simultaneously infinitely many rotatiomd-allcont
subcurrents (folded into bundles) around many differently directed axes. There

for an external observer, such simultaneous infiakial rotation is practically absent

Thus, theab-subcontcurrents tied into radial bundles and folded intodesgiral arms
(see Figure 4) maintain the vacuum balance and stability of the highly deformed i
rior of de Sitted kernd.

The subcont de Sitt&@rkernel, with colossal compression and expansion, turned ot
be an extremely difficult place to live. Only in the area of a sphere with ra
i 1] W are conditions close to normal and it is possible to survive. Therefose,
kemnédi s not called the Aworl do.

Fig. 14: a) Model of a rotatinker-
nd; b) Fractal illustration of a rotat-
ing kernd.

3.26 Antisuldipnt de Sitted kernel

Averaging metric§167)and(168)leads to the metric (in terms of Alsigna to Hr@isubcon®-braid)

(o} O —— 1 0= i Q&% 8 (174)

By performing actions similar t(169)1 (173)with the components of the antisubcorbraid (174), we obtain a negative

(i.e. completely oppost) st abl e anti subcont centrally symmetric fornm
kerneb .

3.2.7 Annihilation of subont and antisutont de Sitted kernels

The subcontandantisubconde Sitted kernels completely compensate for each other's manifestations. This is immediately
visible, because averaging six metrig64)i (169)leads to a zero metric of the form6@).

At the same time, the annihilation eiibcontandantisubconte Sitted kernelscan be accompanied by periodic processes.

The coordinate transformation proposed by Lemaitre and Robertson [9],



—1Q h @V ool atp — (175)

N

leads, for example, a pair of mutually opposite me{ti€gl)and(167)to the form

ds2=ffdt;2i 'Q ~ [drj2+r;4dg?+ sirtqdj ?)), aro

i

dss M2 =1 fifdt;2+'Q  [dr/2+r;¥dg?+ sirtgd/ ?)]. 77
When averaging these metrics, we obtaintagtd

i i

dsal N=20 +—————[dr;2+r;¥dg? + sirfgd/ 2] with signaturg0 + + +) (178

This type of averaged metric is associated with the periodic nature ef/atuaim processes, since the hyperbolic sine

i i

i — T Q- (179
is a periodic function.

The second pair of mutually opposite met(it65) and (168)as a result of coondate transformations

iN —iQ " h @ Goiaep —, (180)

also on average they form ebgaid

i /

dent V=207 ——————[drj2+ r;4dg? + sirfgdj 9] with signaturg0i i i), (181)

of a periodic nature.

In this case, we got two exotic metrids’8) and (181)which do not have a time coordinate. This result requires additional
understanding.

3.28 Compliance with ontological principles

Similar to how it was shown i n AB84)i169)eaa locheprasanted aslalsym ob p p o
7 + 7 = 14 submetrics with the corresponding signatures (as, for example, in randi6@sd dz({01). Mutually opposite

pairs of submetrics, in turn, can be represented as a sum of 7 + 7 = 1subuetrics,and so on ad infinitum.

Thus, a set of generalized de Sitter met(i®4)i (169) describe the metridynamic state of a stationary closed cosm
anttc or e, satisfying all three ontological pnrcien coifp Ife sn:i tfelob.



3.29 Schwarzschildd e Si orid eantifverld w
Let us return to considering the set of metfiiel)i (150),which are solutions to the second vacuum equatié€) (provided
i i i i i and i i i i i g

In this case, we have five metrics with signaturé (+) (for subconti.e. for the outer side of tH#8-/ m-vacuum)

(o} P — — O — 1 0= i 0%, (182
(o} P — — O — 1 0= Qe (183
q P — — O — 1 0= i Q&% h (184
(o P — — O —— 1 O 008k , (185)
(o} O™ O 10— i QD% ; (186)

and five metrics with signaturé ¢ + +) (forantisubcont i.e. for the inner side of tH&-/ ms-vacuum)

(o} p — — O —— 1 0 i Q&% h (187)
o p — — O —— 10— 0% h (188)
o p — — O —— 10— 0% h (189)
o p — — O —— 10— 0% h (190)
(o} O™ A 10— i Q& . (192)

3.210 Subcont Schwarzschilde Sitter world
Let 6s averd&)g €85mdth signature (#(i 1)

dS_]_.4 (#2=_ (dSI.(+)2+ dSQ(+)2 +d58(+)2+ dSq(+)2). (192)
As a result, we get alraid

a4 o 0 1A 10— i 0, (193

where

0 i _ 8 (194)



Such a draidds.%2i s f or med by -threagéh t( it .wd .s tleidn d@asrubf or ms), for mi ng e
guaternions:

g S e _a % 0 00 ® o °h (195) e

) 1f | | =

the product of which is equal to the averaged met88)(1 . |

The zero component of the metric tensor in the averaged medSy i6l = \ | y

equal to one™Q p), which means that timtsis global. = “»_0 /’nc‘\ f =

Letds substit X efthe metric ¢98) n the expréss
sions for the relative elongatiohX6)

a p —— ph (116

where the componentQ are taken from the necurved metric (86).

As a resultwe get
Fig. 15: Graph of the functiod (196), which

determines the relative elongation of the subc:

a T Qi p in the radial direction
P P P P P ~
T T e TwE o _px Ph
P T P P T g T g
a m & m A T
The graph of the functioa  (196) with i ¢ mand i T, which determines the relative elongation of snécontin

the radial direction, is shown in Figure 13. From this graph it is clear thatbo®ntSchwarzschild de Sitter world sche-
matically represented on it is an almost hollow ball with compactgdsgednside of which there is the same small ball,
highlighted by a spherakiacc)al sl it (which we wil!/l call fi

We compare the zero componeifs in metrics (182)1 (185)with the zero component in metrit24)
(o} P — O™ G 10— i Q&EDk. (124Nj)

As a result, we obtain the velocities of fauu b ¢ cunrénts stertwined into bundles in each local region otheb c ont 6 s
world (see Figure3):



=3
=)

P — p — — YO — —f4 YO Do (197)

f
P = P — — YU — — @ Y 0 D S—- —h (198)
P P = YU — —fp Y U _hh ol —, (199)
P P —— YO — —f ¥ hh 5 —8 (200

Sincel cannot exceed the speed of light, it follows from Exs. (148)49) that the conditions must be met
n — — phm — — phm — — p8 (201

From these expressions it is clear that in this casestlimntd surrents flow out in spirals from the periphery of therld

at the speed of light, as describeddh 3 4 i23.2.5 Then they slow down. However, near the inner nucleolus they again
accelerate to the speed of light and turn into two oppesiteb c cmtr d € nt s, whi ch, along the s
spiral, return to the periphery of thvrld, first slowing dowm and then accelerating to the speed of light.

Averages u b c speed éh®ach local region of the Schwarzschid Sitter world

oL op L B (202

&

b - p ¥ L p

i [

This means that the inflowing and outflowing currents, twisted inhali&, completely compensate for each
ot her s mani f &8 b a balabcéand stabilityofitre U In g defotm@teons shown in urels.

3.211 Antisubcont Schwarzschildl e Si tter 6s anti worl d

Averaging metrics(187)71 (190) with signaturei( + + +)

dsi.s M2=— (ds 2+ ds12 +dsg2+ dsi(2), (203

leads to results that coincide with the aging of metric§182)i (185), but with the opposite sign.

If we call the subcont Schwarzschildle Sitted svorlda ficonvexi tyo,antisubcent Schwaraschildedeg at i v e
Sittetd antiworldi s exactly the same ficoncavityo.

3.3 Otherworlds

According to A3.2.2, i-dea@dtteodbst worhe SGodwantswbild, c
studies of three more stable worlds are possible.

Here we will not explore these worlds in detail, because their géiscriis similar to the metridynamic models of stable
vacuum formations discussed above.

We present only the average metrics of these worlds and expressions for the relative elongation.



1] When averaging the metrics5@), we obtain a 4raid

d o, O™ M,19 10— i Q& , (204

where™Q , i - 8 (205

In this case, the radiabmponent of the relative elongatidiilg) has the form

a, Q,i p - p8(206)
- - —z1— —1— - —

The graph of function206) for i chi ¢ Tis shown in Figre 16.
2] When averaging the metrics5@), we obtain a %raid

G .. 0 Q.10 00— i Q&% , (207)

where"Q ,, i - 8 (208

In this case, the radial component of the relative elongatib®) pas the form

& Q.1 p - 8 (209

The graph of function (18 fori p fii p is shown in Figure .
3] When averaging the metrics58), we obtain a braid

A L, O Q.10 10— i Q&% , (210

where"Q ,,, i - 8 (211

In this case, the radial component of the relative elongatib@) pas the form

dZZZ “Q zzz i p - p8

The graph of function212) fori & hi p is shown in Figure &
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Fig. 16: Graph of the relative
elongation functionZ06)
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Fig. 17: Graph of the relative
elongation functionZ09)
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Fig. 18: Graph of the relative
elongation function412)
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The description of the corresponding antiworlds for these worlds is carried out similarly using the corresponding sets of

metrics(156)1 (162).



3.4 Deepening model concepts to infinity

Everything that was said regarding infinite metlig n a mi ¢ mantde
A &lso applies to the Schwarzschild e S iwbrkd and &nsworld, with the
only difference that in the center of these worlds there is a nucleolus.

In the case under consideration, a-sided metric space (i.2%-/ mnp-vacuum)
is the result of the superposition of eight metric sp&t@2)i (185)and (187)
T (190)or the interweaving of 8 + 8 = 16 linear forms twisted intebi#id.

In Figure Xa,bshows an illustration of the interweaving of several affine si

spaces forming a twsided metric space.

The properties of intertwined affine sspacs and multilayer metric space. E'? ﬁg: IIIustrgtlon\ of the 'm?“"’f‘?av"l‘g.gf

with signatures (+1i)and{+ + +), correspondin gpaggg ?%r fﬁ‘i/e:}aga 'rlgit?:a* al ance
conditon (+1 T i)+ (1 + + +) = 0, are descri 28/ vacuum A Al ge
Signatures" [1, 2, 3, 4]. '

Fig.20: Fr act al illustration of -siled2-/npvatuemt wi ned fAfabrico

Depthinfinite metricdynamic models of stablen-v acuum f or mati ons of the ASBpdeeri cal
Sitter 6824 awSclenarsschidle Si t t er 69, sepavatelexdessivé shudies 2an be devoted, taking into
account various coordinate transformations, for exarf®@e (95), (17%etc. But all these models, infinite in depth, based

on sol uti ons andfsecénd vasutinedquatioss, describessingle stable vacuum objects.

Therefore, the general guestion remains open: AHow to i1
that fill the reality around us?



